CLASSIFICATION OF MATTER

- *Chemistry* is the science that deals with the *composition* and *structure* of *matter*, and its *changes*.
- *Matter* is anything that has *mass*, and occupies *space*.
- Matter can be classified by its *physical state* as *gas, liquid* or *solid*.
- Matter can also be classified by its *composition* as *pure substance* or *mixture*.

- Mixtures can be converted into pure substances by simple physical processes (e.g. filtration, evaporation)
- Compounds can be converted into elements by chemical processes or reactions (e.g. electrolysis)

PERIODIC TABLE

- Arrangement of elements based on their atomic masses was first proposed by the Russian chemist, *Dmitri Mendeleev* in 1869.
- In the modern *periodic table* the elements are arranged according to their *atomic numbers*. The elements are generally classified as *metals*, *nonmetals* and *metalloids*.

Metals		Nonmetals	
1.	Mostly solid	1.	Can be solid, liquid or gas
2.	Have shiny appearance	2.	Have dull appearance
3.	Good conductors of heat and	3.	Poor conductors of heat and electricity
	electricity	4.	Are brittle (if solid)
4.	Are malleable and ductile	5.	Gain or share electrons in a chemical
5.	Lose electrons in a chemical		reaction
	reaction		

- Metalloids are elements that possess some properties of metals and some of non-metals. The most important metalloids are silicon (Si) and germanium (Ge) which are used extensively in computer chips.
- Metallic character *increases* going *down a group*, and *decreases* going *across a period*.
- Seven elements (H₂, N₂, O₂, F₂, Cl₂, Br₂ and I₂) exist as **diatomic molecules**. All others exist as monatomic (single atom).

PERIODIC TABLE

- The periodic table is composed of **periods** (rows) and **groups or families** (columns).
- Elements in the same family have similar properties, and are commonly referred to by their traditional names.

- Elements in groups 1-2 and 13-18 are referred to as *main-group* or *representative elements*.
- *Alkali metals* are *soft* metals that are *very reactive*. They often react explosively with other elements.
- Noble gases are unreactive gases that are commonly used in light bulbs.
- *Halogens* are the most *reactive nonmetals*, and occur in nature only as compounds.
- Group 2 elements are called *alkaline-earth metals*. These metals are less reactive than alkali metals.
- The group of metals in between the main group elements are called the *transition metals*.

SOLUTIONS

- Solutions are homogeneous mixtures made from two substances.
- Solutions are composed of solute and solvent.
- **Solute** is the substance that is being dissolved.
- **Solvent** is the substance that dissolves the solute.
- Solutes and solvents can be any of the 3 phases of matter: solids, liquid or gas.

Solution	Solute	Solvent
air	oxygen	nitrogen
soda water	carbon dioxide	water
antifreeze	ethylene glycol	water
wine	ethyl alcohol	water
salt water	salt	water
brass copper		zinc
steel	carbon	iron

Some Common Solutions

- Most common solutions have water as solvent and are called aqueous.
- Solutions that **do not contain the maximum amount of solute** dissolved in them are called **unsaturated**.
- Solutions that **contain the maximum amount of solute** dissolved in them and cannot dissolved anymore solute are called **saturated**.
- Solutions that **contain more than the maximum amount of solute** dissolved in them are called **supersaturated**.
- **Supersaturated** solutions are **unstable** and can be made to form crystals with the slightest disturbance.

COMPOUND NAMES & FORMULAS

- Elements combine *chemically* to form compounds. Each compound is represented by a *chemical formula*.
- Chemical formulas are written by placing element symbols next to one another. The more metallic element is written first followed by the less metallic element.
- Subscripts are used to indicate the number of atoms of each element in the compound.

Examples:

NaCl CO₂

 H_2SO_4 $Ca(NO_3)_2$

Naming Binary Compounds of a Metal and a Non-metal

• To name a binary (2-element) compound of a metal and non-metal, first name the metal followed by the non-metal with ending changed to –ide.

NaCl

 Al_2O_3

 Ca_2N_3

Naming Binary Compounds of 2 Non-metals

- To name a binary compound of 2 non-metals, the more metallic element is written first, followed by the second element with the –ide ending.
- The number of atoms for each element is indicated by Greek prefixes: mono-(1); di-(2); tri-(3);tetra-(4); penta-(5); hexa-(6); hepta-(7).

HCl CS₂

PBr₃