EARLY CONCEPTS OF THE ATOM

- The *smallest* particle of an *element* that still *retains its properties* is called an *atom*.
- The Greek philosopher *Democritus* was the first person that theorized that matter was made of small, *indivisible* (Greek: *atomos*) parts.
- The first model of the atom ("*soccer ball"*) was introduced by *John Dalton* in early 1800. He thought of the atom as a featureless *ball of uniform density*.
- This model is referred to as the "soccer ball" model.
- Dalton's model was refined by *J.J. Thomson*, who discovered the *electron* and the *charged nature of the atom*.
- Thomson's model is called "*plum pudding*" model.
- Thomson's model was further refined by *Ernest Rutherford*, who discovered the *atomic nucleus* through his "gold foil experiment".
- This model is called the "*nuclear*" model.
- The nuclear model describes the atom as having a dense positively charged center (nucleus) surrounded by negatively charged particles (electrons).
- Further refinement of the atomic model by *Neils Bohr* lead to the "*planetary*" model.
- This model describes the atom as a positively charged center (nucleus) surrounded by negatively charged particles (electrons).
- In this model the electrons occupy fixed energy levels called *orbitals*.

ATOMIC STRUCTURE

- The *modern atom* consists of a *small positively charged nucleus*, surrounded by a cloud of *negatively charged* particles (*electrons*).
- The *nucleus* of an atom consists of positively charged *protons*, and neutral particles called *neutrons*.
- The modern atom consists of 3 subatomic particles:

Particle	Charge	Relative Mass
Proton	+1	~1800
Neutron	0	~1800
Electron	-1	1

- The number of *protons* in an atom determines its identity, and is called *atomic number* (Z).
- In a neutral atom, the number of *protons* (+) are *equal* to the number of *electrons* (-).
- Almost *all the mass* of the atom rests in the *nucleus*. Therefore the *number of protons and neutrons* in an atom are called the *mass number (A)*.

ATOMIC STRUCTURE

• The general *designation* for an *atom* is shown below:

Number of protons (p^+) = Atomic no. (Z) Number of electrons (e^-) = number of protons (p^+) Number of neutrons (n^0) = A – Z

Examples:

1. Determine the number of protons, electrons and neutrons in a fluorine atom, ${}^{19}_{9}$ F.

Number of protons = Number of electrons = Number of neutrons =

2. Argon (Ar) has 18 protons, 18 electrons and 22 neutrons. Write a formula designation for an argon atom.

Atomic number = Mass number = protons + neutrons =

ISOTOPES

- Atoms of the *same element* that possess a *different number of neutrons* are called *isotopes*.
- Isotopes of an element have the same atomic number (Z), but a different mass number (A).

- The mass of an atom is due to the number of protons and neutrons in its nucleus.
- The atomic mass of an element is determined to be the **weighted average** of the atomic **masses of its isotopes**.
- Therefore the atomic mass of an element is *closer* to the mass of the isotope with the *most abundance*.

<u>Examples:</u>

1. Which pair of the following elements are isotopes?

$$^{207}_{82}X$$
 $^{207}_{83}Y$ $^{209}_{84}Z$ $^{209}_{82}R$

2. Based on the information below, which is the most abundant isotope of boron (atomic mass = 10.8 u)?

Isotope	^{10}B	¹¹ B
Mass (u)	10.0	11.0