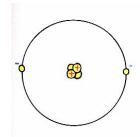
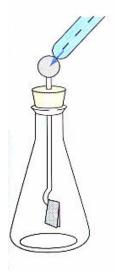
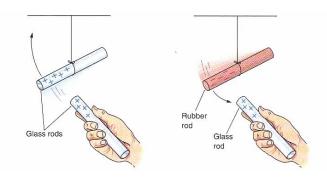

ELECTRICAL CHARGES


- *Static electricity* is the *accumulation of electric charges* on an object.
- Electric *charges* are caused by an *imbalance* between *positive* (protons) and *negative* (electrons) particles in matter.
- *Like* charges *repel* each other, while *unlike* charges *attract*.



• Presence of electrical charges can be detected by the use of an *electroscope*.

Neutral objects can be charged in two ways:


- Charging of neutral objects through *contact* is called *conduction*.
- Charging of neutral objects *without* direct *contact* is called *induction*.
- *Conductors* are substances that *allow* electrons to *move easily* through them. *Metals* are examples of good conductors.
- *Insulators* are substances that *don't allow* electrons to *move easily* through them. *Plastics, wood and glass* are good insulators.

ELECTRIC FORCES

• *Repulsions* and *attractions* caused by electrical charges are *forces*.

• The magnitude of the electric forces is described by *Coulomb's Law*:

$$\mathbf{F} = \mathbf{k} \frac{\mathbf{q}_1 \mathbf{q}_2}{\mathbf{r}^2}$$

where,

F= force of attraction or repulsion q_1 and q_2 = electric charges r = distance between the charges k= the Coulomb's constant

Examples:

Two positive charges are a distant of 2 cm from one another. If they are moved to a distant of 1 cm, the force between them

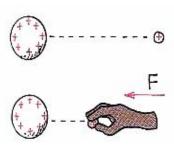
- A) increases 2 times
- B) decreases 2 times
- C) increases 4 times
- D) decreases 4 times

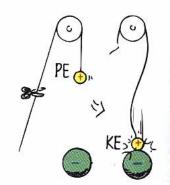
CURRENT / VOLTAGE / RESISTANCE

Current:

- *Motion* of electric *charges* causes electric *current*.
- *Rate of flow* of electric charges is measured as *electric current*.

current=
$$\frac{charge}{time} = \frac{q}{t}$$

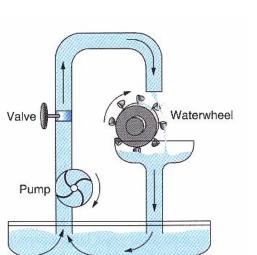

• Electric current is measured as *amperes*.

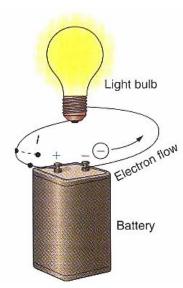

Voltage:

- When two charges are brought together or separated from each other, *work* must be done to overcome the *forces between them*.
- The work thus done increases the *electric potential energy* of the charges.
- When the charge is released, the electrical *PE is converted to KE*.
- The *electrical potential difference* is what is measured as *voltage (V)*.

<u>Resistance</u>

- When current flows through a conducting material, it meets some opposition to its flow due to collisions within the material.
- This property is called *resistance (R)* and is measured in *ohms (Ω)*.




4

ELECTRIC CIRCUIT & WATER ANALOGY

• In the electric circuit, the battery provides the voltage, current flows through the wire and the bulb provides the resistance to flow of electrons.

• In the water circuit, the pump is analogous to the battery, the pipe represents the wire carrying water flow, and the water wheel provides resistance to flow of water.

OHM'S LAW

• The relationship between *voltage, current* and *resistance* in a circuit is called Ohm's Law and is described as follows:

Voltage = Current x Resistance

(volts) = (amperes) x (ohms)

V = I R

<u>Examples:</u>

1. A toaster with a resistance of 50 Ω is connected to a 120 V source. What current flows through the toaster?

V= R= I=

- 2. A 12-V car battery operates a lamp with a current 0.08 amperes. What is the resistance of the lamp?
 - V= R= I=

ELECTRICAL POWER

• *Electrical Power (P)* is the work done by the current against the resistance of the circuit, and can be calculated as follows:

$$P = V I$$

• The *unit* of power is *watts (W)*.

Examples:

1. A color television connected to a 120-V source draws 3.5 A of current. What is the power rating of this TV?

2. A 60-W light bulb is connected to a 120-V power source. Find the current and the resistance of the bulb.

ELECTRICAL CIRCUITS

- Any *closed path* along which electrons can *flow* is a *circuit*.
- Two types of circuits are possible: *series* & *parallel*.

Series Circuit

- Electric *current* has only *one path of flow* through this circuit.
- The *total resistance* of the circuit is the *sum* of all the *individual resistances*.

$$\mathbf{R}_{\rm tot} = \mathbf{R}_1 + \mathbf{R}_2 + \mathbf{R}_3 + \dots$$

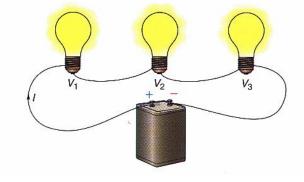
• The *current* through each bulb is the *same*.

$$\mathbf{I} = \mathbf{I}_1 = \mathbf{I}_2 = \mathbf{I}_3$$

• The *sum of the voltages* across each bulb equals the source voltage.

$$\mathbf{V}_{\rm tot} = \mathbf{V}_1 + \mathbf{V}_2 + \mathbf{V}_3$$

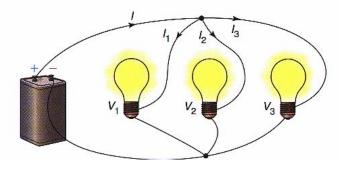
<u>Examples:</u>


Three lamps with resistances of 15Ω each are connected to a 72-V power source. What is the current and power through the circuit?

$$R_1 = R_2 = R_3 =$$

$$V =$$

$$I =$$


$$P =$$

ELECRICAL CIRCUITS

Parallel Circuit

- Electric *current* has *more than one path of flow* through this circuit.
- The *total resistance* of the circuit is *less than the smallest* resistance in the circuit.

$$\mathbf{R}_{\mathrm{T}} = \frac{\mathbf{R}_{1} \, \mathbf{R}_{2}}{\mathbf{R}_{1} + \mathbf{R}_{2}}$$

• The *total current* in the circuit is equal to the *sum of the currents* in its parallel branches.

$$I_{tot} = I_1 + I_2 + I_3$$

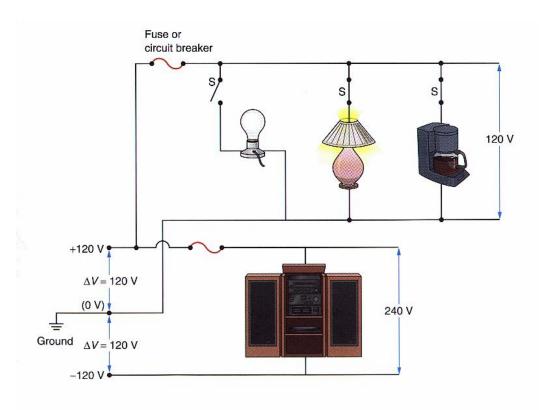
• In this circuit, the *voltage* across each branch is the *same*.

$$V_{tot} = V_1 = V_2 = V_3$$

Example:

1. Two lamps with resistances of 6Ω and 3Ω respectively are wired in parallel. Calculate the total resistance of this circuit.

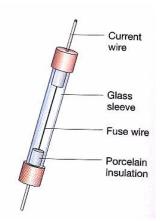
$$\mathbf{R}_{\mathrm{T}} = \frac{\mathbf{R}_{1} \, \mathbf{R}_{2}}{\mathbf{R}_{1} + \mathbf{R}_{2}} = -----$$


- 2. When three 15Ω lamps are connected in parallel to a 72-V power source, the current through each lamp is 4.8 amperes. What is the total resistance in this circuit?
 - $I_{Total} =$ V = R =

COMPARING CIRCUITS

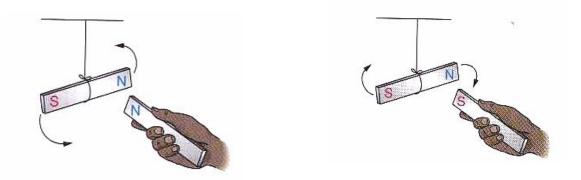
• There are several differences in operation between the series and the parallel circuits.

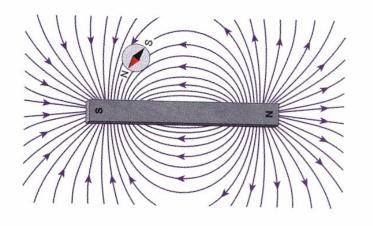
Series Circuit	Parallel Circuit
 If one lamp fails, all others stop working. 	 If one lamp fails, the others continue to work.
 As more lamps are added to the circuit,	As more lamps are added to the circuit,
total resistance increases, and total	total resistance decreases, and total
current decreases.	current increases.
 As a result the lamps get <i>dimmer</i> as	As a result the circuit can get <i>overheated</i>
more is added to the circuit.	as more lamps are added to it.


• Household circuits are wired in parallel so each appliance can work independently of others.

ELECTRICAL SAFETY

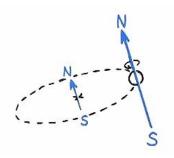
- The damaging effects of *electric shock* on a human body are caused by a *current* and *not by voltage*. The resistance of a human body ranges from 500,000 Ω (dry skin) to about 100 Ω (fully soaked body in salt water).
- For a body to receive shock, there must be a *difference in electric potential* between one part of the body and another.
- That is why a bird can sit on a high voltage wire without any problem, but it had better not reach over and grab a neighboring wire!
- To avoid hazard from an *overheating* circuit, a *fuse* is placed in the circuit. The low melting point of the *fuse wire* causes it to *melt and break* the circuit if the current becomes excessive.
- A dedicated *ground wire* in electrical appliances through a third prong causes the *circuit to be opened* and *electric potential* of the casing to become *zero, avoiding a shock hazard*.

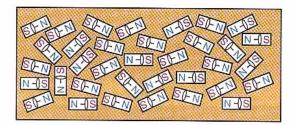




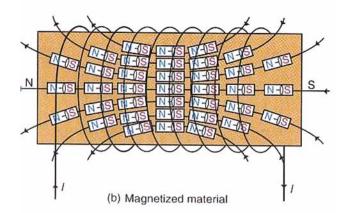
MAGNETIC FORCES & FIELDS

- *Magnetic forces* are *similar* to *electric forces*, for they can attract and repel without touching (*action at a distance*).
- Similar to electric charges, *like magnetic poles repel*, while *opposite poles attract*.

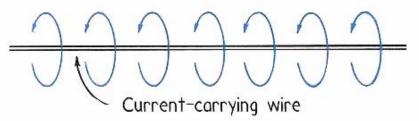


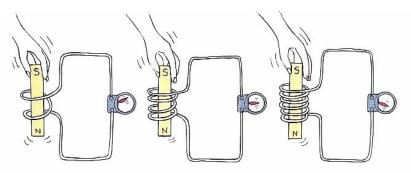

- Magnetic *poles cannot be isolated* while *electric charges can*.
- *Magnetic field* is the *area* around a magnet where the *magnetic forces act*, and are concentrated near the poles of a magnet.

MAGNETIC DOMAINS


- *Magnetic fields* are caused by *"distortions"* in a *moving electric field*.
- These *distortions* are caused by the *"spinning" and revolving motion of electrons* in an atom. Each *atom* is therefore a *tiny magnet*.
- A large *cluster of atoms aligned* together give rise to a *magnetic domain*.
- An *unmagnetized* material has *unaligned domains*.

(a) Unmagnetized material


• When the domains are *induced into alignment*, *magnetic properties appear*.


• Domains can be induced into alignment by *rubbing against a strong magnet* or by running *current through a wire* wrapped around a metal.

ELECTROMAGNETISM

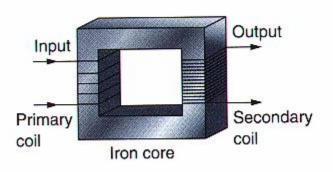
- The interaction of *electric and magnetic* effects is called *electromagnetism*.
- An *electric current* produces a *magnetic field perpendicular* to the direction of its movement.


- In early 1800, *Michael Faraday* discovered that an *electric current* could be produced from a *changing magnetic field*.
- *Electromagnetic induction* is the process of creating a current by movement of a magnet through a coil of wire.


- The *amount of current* produced depends on the *number of loops*, the *rate of movement* of the magnet and the *strength of the magnet*.
- Many devices such as a telephone & doorbell use this principle to operate.

APPLICATIONS OF ELECTROMAGNETISM

• A simple *motor* is an *electromagnet* that converts *electrical energy to mechanical energy*.



• A *generator* converts *mechanical energy to electrical energy*, and uses the principle of *electromagnetic induction*.

TRANSFORMERS

- A transformer is used to increase or decrease voltage in a circuit using Faraday's Law.
- A *transformer* consists of two coils of insulated wire wrapped around an iron core.
- *Current* in the primary coil *creates a magnetic field*, which is concentrated by the iron core, and passed through the secondary coil.

e.

- The *magnetic field* in the secondary coil *produces a current* output.
- The *voltage change* in the transformer is based on *Faraday's Law*, and is given by

$$\frac{\mathbf{V}_1}{\mathbf{N}_1} = \frac{\mathbf{V}_2}{\mathbf{N}_2} \qquad \text{or} \qquad \mathbf{V}_2 = \left(\frac{\mathbf{N}_2}{\mathbf{N}_1}\right) \mathbf{V}_1$$

where,

 V_1 =input voltage N_1 =number of turns in the primary coil V_2 =output voltage N_2 =number of turns in the secondary coil

- A transformer that has *more turns* in the *secondary coil* compared to the primary coil is a *step-up* transformer.
- A transformer that has *more turns* in the *primary coil* compared to the secondary coil is a *step-down* transformer.

TRANSFORMERS

• The power output in the primary and secondary coils of a transformer remain the same, therefore

$$\mathbf{P}_1 = \mathbf{P}_2$$
$$\mathbf{V}_1 \mathbf{I}_1 = \mathbf{V}_2 \mathbf{I}_2$$

<u>Examples:</u>

- 1. A transformer has 500 windings in its primary coil and 25 in its secondary coil. If the input voltage is 4400 V, find the output voltage.
 - $N_1 = N_2 = V_1 = V_2 =$
- 2. A transformer has 300 turns in its secondary and 50 turns in its primary coil. The input voltage is 12 V. If 3.0 A flows in the primary coil, find the voltage and current in the secondary coil?

$$N_1 = N_2 = V_1 = I_1 = V_2 = I_2 = I_2 = I_2$$