Test 3 Review

For each reaction below:

- Predict the products, and write a balanced molecular equation.
- If no reaction occurs, write "No Reaction" after the arrow.
- For precipitation reactions, identify the precipitate, and write a *net ionic equation*.
 - 1. $H_2SO_4(aq) + KOH(aq) \longrightarrow$
 - 2. $Ca(NO_3)_2(aq) + Na_2SO_4(aq) \longrightarrow$
 - 3. NaNO₃ (aq) + CuSO₄ (aq) \longrightarrow
 - 4. $MgCl_2(aq) + NaOH(aq) \longrightarrow$
 - 5. $K_2CO_3(aq) + HCl(aq) \longrightarrow$
 - 6. KCl (aq) + Fe(NO₃)₂ (aq) \longrightarrow

Chemistry 65

7. Calculate the number of moles of NaOH that are needed to react with 500.0 g of H₂SO₄ according to the following equation:

 $H_2SO_4 + 2 NaOH \rightarrow Na_2SO_4 + 2 H_2O$

8. Calculate the mass of NH₃ that can be produced from the reaction of 125 g of NCl₃ according to the following equation:

 $NCl_3 + 3 H_2O \rightarrow NH_3 + 3 HOCl$

9. Silicon dioxide (SiO₂) can be produced by the unbalanced reaction shown below in 85.0% yield. In one experiment 155 g of SiCl₄ are completely reacted with excess water. How many grams of SiO₂ are actually produced in this reaction?

 $SiCl_4 + H_2O \rightarrow SiO_2 + HCl$

10. Classify each of the reactions below as exothermic or endothermic:

a) $2 \text{ Na}(s) + \text{Cl}_2(g) \rightarrow 2 \text{ NaCl}(s) + 819 \text{ kJ}$	
b) $PCl_{5}(g) + 67 \text{ kJ} \rightarrow PCl_{3}(g) + Cl_{2}(g)$	
c) Ca(OH) ₂ (s) \rightarrow CaO (s) + H ₂ O (l) Δ H=+65.3 kJ	
d) Si (s) + 2 Cl ₂ (g) \rightarrow SiCl ₄ (g) Δ H=-657 kJ	

11. Iron (III) oxide reacts with carbon monoxide as shown below:

 $Fe_2O_3(s) + 3 CO(g) \rightarrow 2 Fe(s) + 3 CO_2(g)$

A reaction mixture initially contains 22.55 g of Fe_2O_3 and 14.78 g of CO. Once the reaction has occurred as completely as possible, what mass (in grams) of the excess reactant is left?

12. PCl₃ reacts with water to form HCl and aqueous H₃PO₃.

- a) Write a balanced equation for this reaction.
- b) Calculate the percent yield of a reaction in which 200.0 g of PCl₃ react with excess water to form 128 g of HCl.

Chemistry 65

13. Liquid hydrogen peroxide is used in many rocket fuel mixtures because it produces oxygen gas on decomposition, as shown below:

 $2 H_2 O_2 (l) \rightarrow 2 H_2 O (l) + O_2 (g)$ $\Delta H = -196.1 \text{ kJ}$

How much heat is released when 732 kg of H_2O_2 is decomposed?

14. Consider the reaction shown below:

$$2 \text{ NO}(g) + 5 \text{ H}_2(g) \rightarrow 2 \text{ NH}_3(g) + 2 \text{ H}_2\text{O}(g)$$

A reaction mixture initially contains 5 mol NO and 10 mol of H_2 . Determine the moles and identity of all substances present in the mixture after all the reaction has taken place.

- 15. What solution can be added to the mixture of each of the ions listed below to precipitate one while keeping the other in solution?
 - a) Sr^{2+} and $\mathrm{Hg_2}^{2+}$
 - b) NH_4^+ and Ca^{2+}

ANSWERS:

- 1-6) No Answers provided
- 7) 10.20 mol NaOH
- 8) 17.7 g NH₃
- 9) 46.6 g SiO₂
- 10a) Exothermic
- 10b) Endothermic
- 10c) Endothermic
- 10d) Exothermic
- 11) 2.91 g of CO
- 12) 80.3% yield
- 13) 2.11x10⁶ kJ
- 14) 1 mol NO; 4 mol NH₃; 4 mol H₂O