Stoichiometry Calculation Practice Worksheet

1. Calculate the number of moles of NaOH that are needed to react with 500.0 g of H₂SO₄ according to the following equation:

 $H_2SO_4 + 2 NaOH \rightarrow Na_2SO_4 + 2 H_2O$

ANS: 10.19 mol

2. Calculate the mass of NH₃ that can be produced from the reaction of 125 g of NCl₃ according to the following equation:

 $NCl_3 + 3 H_2O \rightarrow NH_3 + 3 HOCl$

ANS: 17.7 g

3. Identify the limiting reactant and determine the mass of CO_2 that can be produced from the reaction of 25.0 g of C_3H_8 with 75.0 g of O_2 according to the following equation:

 $C_3H_8 \ + \quad 5 \ O_2 \ \rightarrow \qquad 3 \ CO_2 \ + \quad 4 \ H_2O$

ANS: 61.9 g

4. How many grams of SO_2 are produced when 152 g of CS_2 react with 48.0 g of O_2 according to the following equation:

$$CS_2 + 3O_2 \rightarrow CO_2 + 2SO_2$$

ANS: 64.1 g

Chemistry 51

5. When 50.0 g of MgCO₃ react completely with H_3PO_4 , as shown below, 15.8 g of CO₂ are produced. What is the percent yield for this reaction?

 $2 \text{ H}_3\text{PO}_4 + 3 \text{ MgCO}_3 \rightarrow \text{Mg}_3(\text{PO}_4)_2 + 3 \text{ CO}_2 + 3 \text{ H}_2\text{O}$

ANS: 60.5%

6. How many grams of P₄O₁₀ can be produced from the reaction of 52.9 g of KClO₃ with excess phosphorous as shown below:

 $\text{KClO}_3(s) + P_4(s) \rightarrow P_4O_{10}(s) + \text{KCl}(s)$ (unbalanced)

ANS: 36.8 g

7. Given the equation below, determine the limiting reactant, and calculate how many grams of Cu can be formed from the reaction of 18.1 g of NH₃ and 90.4 g of CuO.

2 NH₃ (g) + 3 CuO (s) \rightarrow N₂ (g) + 3 Cu (s) + 3 H₂O (g)

Chemistry 51

8. When 50.0 g of MgCO₃ react completely with H₃PO₄, as shown below,15.8 g of CO₂ is produced. Determine the theoretical and percent yield for this reaction?

 $2 H_3PO_4 + 3 MgCO_3 \rightarrow Mg_3(PO_4)_2 + 3 CO_2 + 3 H_2O$

ANS: 26.1 g; 60.5%

9. What mass of F_2 is needed to produce 120.0 g of PF_3 , as shown, if the reaction has a 78.1% yield?

 $P_4(s) + 6 F_2(g) \rightarrow 4 PF_3$

ANS: 99.6 g