REVIEW QUESTIONS Chapter 6

- 1. Determine the molar mass for each compound shown below:
 - a) (NH₄)₂CO₃

Molar mass =
$$[2(14.01)+8(1.01)+12.01+3(16.00)] = 96.11 \text{ g/mol}$$

b) $Fe_3(PO_4)_2$

Molar mass = [3(55.85)+2(30.97)+8(16.00)] = 357.49 g/mol

2. How many chlorine atoms are present in 45 g of chlorine gas (Cl_2) ?

45 g Cl₂ x
$$\frac{1 \text{ mol}}{70.90 \text{ g}}$$
 x $\frac{2 \text{ mol Cl}}{1 \text{ mol Cl}_2}$ x $\frac{6.02 \times 10^{23} \text{ atoms}}{1 \text{ mol}} = 7.6 \times 10^{23} \text{ atoms of Cl}$

3. How many moles are in 3.4 x 10^{23} molecules of H₂SO₄?

$$3.4 \times 10^{23}$$
 molecules x $\frac{1 \text{ mol}}{6.02 \times 10^{23} \text{ molecules}} = 0.56 \text{ mol}$

4. How many grams does 5.60×10^{22} molecules of SiO₂ weigh?

5.60x10²² molecules x
$$\frac{1 \text{ mol}}{6.02x10^{23} \text{ molecules}}$$
 x $\frac{60.09 \text{ g}}{1 \text{ mol}}$ = 5.59 g

5. What mass of chlorine is present in 12.2 g of PbCl₂?

12.2 g PbCl₂ x
$$\frac{1 \text{ mol}}{278.1 \text{ g}}$$
 x $\frac{2 \text{ mol Cl}}{1 \text{ mol PbCl}_2}$ x $\frac{35.45 \text{ g}}{1 \text{ mol}}$ = 3.11 of Cl

6. How many atoms of oxygen are present in 2.15 g of $Ca_3(PO_4)_2$?

2.15 g Ca₃(PO₄)₂ x
$$\frac{1 \text{ mol}}{310.18 \text{ g}}$$
 x $\frac{8 \text{ mol O}}{1 \text{ mol Ca}_3(PO_4)_2}$ x $\frac{6.02 \times 10^{23} \text{ atoms}}{1 \text{ mol}} = 3.34 \times 10^{22}$ atoms of O

7. Calculate the mass percent composition of each element in C_3H_9N .

Molar mass = [3(12.01)+9(1.01)+14.01] = 59.13

% C =
$$\frac{36.03 \text{ g}}{59.13 \text{ g}} \text{ x100} = 60.93\%$$

% H = $\frac{9.09 \text{ g}}{59.13 \text{ g}} \text{ x100} = 15.4\%$
% N = $\frac{14.01 \text{ g}}{59.13 \text{ g}} \text{ x100} = 23.69\%$

8. Silver chloride, used in silver plating, contains 75.27% silver. Calculate the mass of silver chloride required to make 4.8 g of silver plating.

$$4.8 \text{ g Ag x } \frac{100 \text{ g AgCl}}{75.27 \text{ g Ag}} = 6.4 \text{ g}$$

9. The recommended daily allowance (RDA) for iodine is $150 \mu g/day$. How many grams of KI must one consume in order to meet this guideline?

% I in KI = $\frac{126.90 \text{ g}}{166.00 \text{ g}} \text{x}100 = 76.45\%$ 150 µg I x $\frac{1 \text{ g}}{10 \text{ µg}}$ x $\frac{100 \text{ g KI}}{76.45 \text{ g I}} = 2.0 \text{x}10^{-4} \text{ g KI}$ 10. Determine the empirical formula for a compound with the following composition:

41.1% N 11.8% H 47.1% S
41.1 g N x
$$\frac{1 \text{ mol}}{14.01 \text{ g}} = 2.934 \text{ mol N} (2)$$

11.8 g H x $\frac{1 \text{ mol}}{1.01 \text{ g}} = 11.68 \text{ mol H} (8)$ Formula is N₂H₈S
47.1 g S x $\frac{1 \text{ mol}}{32.06 \text{ g}} = 1.469 \text{ mol S} (1)$

11. A leak in the air conditioning system of an older car releases 55 g of CF_2Cl_2 each month. How much Cl is emitted into the atmosphere by this car in a year?

12 months
$$x \frac{55 \text{ g } \text{CF}_2 \text{Cl}_2}{1 \text{ month}} x \frac{1 \text{ mol}}{120.91 \text{ g}} x \frac{2 \text{ Cl}}{1 \text{ CF}_2 \text{Cl}_2} x \frac{35.45 \text{ g}}{1 \text{ mol}} = 390 \text{ g}$$
 (2 sig figs)

12. Seawater contains 3.5% NaCl by mass and has a density of 1.02 g/mL. What volume of seawater contains 1.0 g of sodium?

1.0 g Na x $\frac{1 \text{ mol}}{22.99 \text{ g}}$ x $\frac{1 \text{ mol NaCl}}{1 \text{ mol Na}}$ x $\frac{58.44 \text{ g}}{1 \text{ mol}}$ x $\frac{100 \text{ g seawater}}{3.5 \text{ g NaCl}}$ x $\frac{1 \text{ mL}}{1.02 \text{ g}}$ = 71 mL seawater

Alternate solution:

1.0 g Na x
$$\frac{58.44 \text{ g NaCl}}{22.99 \text{ g Na}}$$
 x $\frac{100 \text{ g seawater}}{3.5 \text{ g NaCl}}$ x $\frac{1 \text{ mL}}{1.02 \text{ g}}$ = 71 mL seawater

13. A compound whose empirical formula is C_3H_3O has a molar mass of 110.0 g/mol. What is the molecular formula for the compound?

mass of empirical formula = [3(12.01)+3(1.01)+16.00] = 55.06 gn = $\frac{\text{molar mass}}{\text{mass of empirical formula}} = \frac{110.0 \text{ g}}{55.06 \text{ g}} = 2$ molecular formula = $(C_3H_3O)_2 = C_6H_6O_2$

14. What is the mass percent of each element in $C_3H_4O_3$?

molar mass = [3(12.01)+4(1.01)+3(16.00)] = 88.07 g/mol% C = $\frac{36.03 \text{ g}}{88.07 \text{ g}} \text{x}100 = 40.92\%$ % H = $\frac{4.04 \text{ g}}{88.07 \text{ g}} \text{x}100 = 4.59\%$ % O = $\frac{48.00 \text{ g}}{88.07 \text{ g}} \text{x}100 = 54.50\%$

15. A 45.2-mg sample of phosphorous reacts with selenium to form 131.6 mg of the selenide. What is the empirical formula of the phosphorous selenide?

mass of selenium = 131.6 mg - 45.2 mg = 86.4 mg mole P = 45.2 mg x $\frac{1 \text{ g}}{10^3 \text{ mg}}$ x $\frac{1 \text{ mol}}{30.97 \text{ g}}$ = 1.46x10⁻³ mol (1.33) x 3 = 4 mole Se = 86.4 mg x $\frac{1 \text{ g}}{10^3 \text{ mg}}$ x $\frac{1 \text{ mol}}{78.96 \text{ g}}$ = 1.094x10⁻³ mol (1) x 3 = 3 empirical formula = P₄Se₃