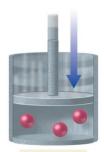
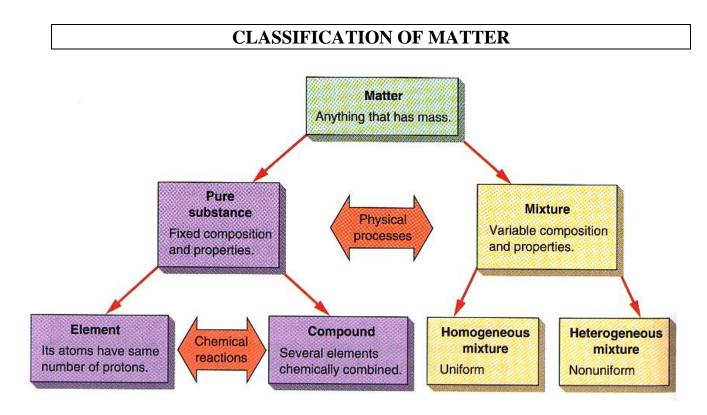

MATTER & ITS FORMS


- *Matter* is defined as anything that has *mass* and *occupies space*.
- *Matter* can be classified by its states: *solid*, *liquid*, *and gas*.

- *Solid: Densely* packed matter with *definite shape* and *volume*.
 - Particles have *strong forces* of attraction towards each other.
- *Liquid: Loosely* packed matter with *definite volume* but *indefinite shape*.
 Particles have *moderate forces* of attraction towards each other.
 - Gas: Very loosely packed matter with no definite shape or volume.
 - Particles have *little or no forces of attraction* towards each other.

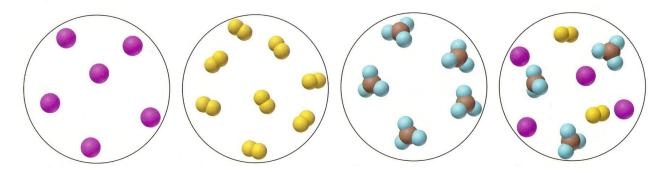


Gas-compressible

State	Shape	Volume	Particles	Compressibility
Solid	Definite	Definite	Densely packed	Very slight
Liquid	Indefinite	Definite	Mobile	Slight
Gas	Indefinite	Indefinite	Far apart	High

SUMMARY OF PROPERTIES OF MATTER

Chapter 3


Element: • *Pure substance* that is made up of only *one type of atom*.

• Examples include: gold, copper, hydrogen.

Compound: • *Pure substance* that is made up of *two or more elements chemically* combined together.

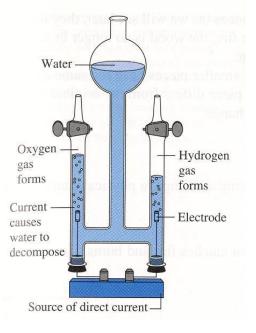
- *Properties are unique* compared to its components.
- Smallest particle is a *molecule*.
- Examples include: water, salt, aspirin.

Classify each of the following substances as element, compound or mixture.

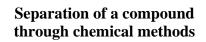
MIXTURES

Mixture: • *Two or more substances physically* combined together.

- *Properties are similar* to those of its components.
- Can be *separated easily* by a *physical process*.
- Two types: *heterogeneous and homogeneous*.


Heterogeneous: • Mixture that is *non-uniform* in composition.

• Examples include: vegetable soup, cement, salad dressing.


Homogeneous: • Mixture that is uniform in composition.

- Commonly referred to as *solution*.
- Examples include: gasoline, soda pop, salt solution.

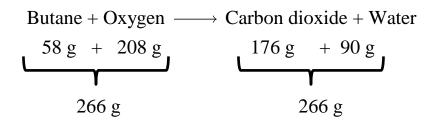
Separation of a mixture through physical methods

PROPERTIES OF MATTER

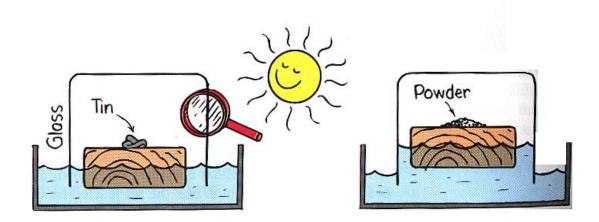
Properties are characteristics that give substances their *unique* identity, and can be used to *distinguish* one sample from another.

- A *physical property* is one, which a substance displays *without changing* its *composition*. Examples: color, melting point, density, electrical conductivity
- A *chemical property* is one, which a substance displays as it *interacts* with, or *transforms* into other substances (*changes its composition*). Examples: flammability, corrosiveness, reactivity with acids.
- A *physical change* is change in *physical properties* of matter *without change in composition*. Physical changes are *reversible*. Examples: melting of ice, formation of dew.
- A *chemical change* (or chemical reaction) is a change that *creates new matter*. Chemical changes are *not easily reversible*. Examples: burning of paper, cooking of food, corrosion of metals.

Examples:


- 1. Identify each of the following properties as physical or chemical:
 - a) Oxygen is a gas
 - b) Helium is un-reactive
 - c) Water has high specific heat
 - d) Gasoline is flammable
 - e) Sodium is soft & shiny
- 2. Identify each of the following changes as physical or chemical:
- Iron(III) oxide or rust Iron atoms

- a) Cooking food
- b) Mixing sugar in tea
- c) Carving wood
- d) Burning gas
- e) Food molding


CONSERVATION OF MASS

• The most fundamental chemical observation of the 18th century was the *law of conservation of mass*:

Matter is neither created nor destroyed in a chemical reaction.

- The *number* of substances and their *properties* may *change*, but the *total amount of matter* remains *constant*.
- Antoine *Lavoisier* first proposed the *law of conservation of mass* after performing careful experiments with *closed* systems such as that shown below.

ENERGY & HEAT

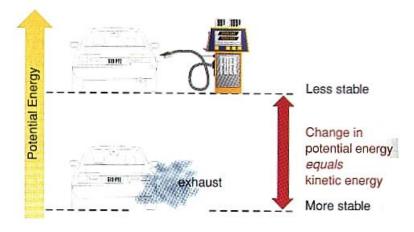
- *Energy* is defined as the capacity of matter to do *work*.
- There are two types of energy:

Potential (stored) and *Kinetic* (moving)

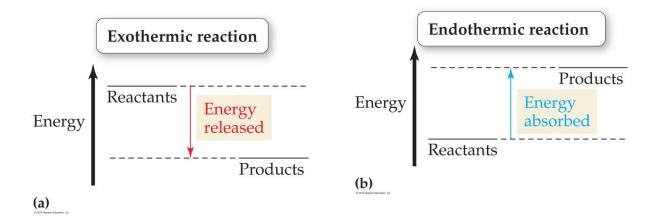
- Energy possesses many *forms* (chemical, electrical, thermal, etc.), and can be *converted* from one form into another.
- In chemistry, *energy* is commonly expressed as *heat*.
- *Heat* is measured in SI units of *joule* or the common unit of *calorie*. (1 cal=4.184 J)
- A related energy unit is the *nutritional Calorie* which is equivalent to 1000 calories (or 1 kcal).
- Residential energy use is measured units of kilowatt-hour (kWh).

		NE PE	
			X KE
	sites	Î	R
а ,		1	

TABLE 3.2 Energy Conversion Factors 1 calorie (cal) = 4 184 ioules (I)


hour (kWh)		joules (J)
1 kilowatt-	=	3.60×10^{6}
		(cal)
1 Calorie (Cal)	=	1000 calories
i calorie (cal)	=	4.164 Joules (J)

Examples:

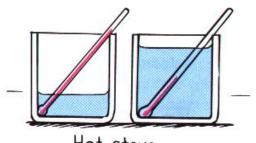

1. A candy bar contains 225 Cal of nutritional energy. How many joules does it contain?

ENERGY IN PHYSICAL & CHEMICAL CHANGES

- In all *physical & chemical changes*, matter either *absorbs or releases energy*.
- *Higher energy* systems are *less stable* than lower energy systems.

- When *energy is released* during a change, it is said to be *exothermic*.
- When *energy is gained* during a change, it is said to be *endothermic*.

TEMPERATURE & HEAT


- *Temperature* of a substance is the measure of its *thermal energy*.
- The hotter an object, the greater the random motion of its particles, and the higher its temperature.
- Heat is *the transfer or exchange* of *thermal energy* caused by a temperature difference.

Heat vs. Temperature:

- *Heat* and *temperature* are not the same thing. *Heat* energy is *the total kinetic energy* of the particles of a substance, while *temperature* is the *average kinetic energy* of the particles of a substance.
- As an analogy, consider the test scores in a class, with points being analogous to heat. In this analogy, heat is like the total number of points, while temperature is the average score.

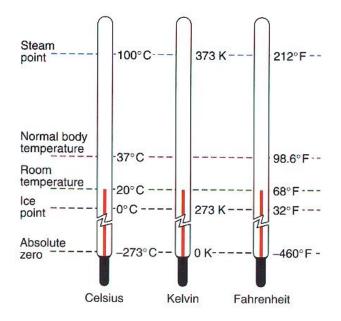
Test	Score
Test 1	100
Test 2	50
Test 3	100
Test 4	50
Total pts.	300
Avg. pts.	75

• Although the *same* amount of *heat* is added to both containers, the *temperature increases* more in the container with the *smaller amount* of water.

Hot stove

TEMPERATURE SCALES

- *Thermometer* is an instrument that measures temperature and is based on *thermometric properties* (i.e. expansion of solids or liquids, color change, etc.) of matter.
- Three *scales* are used for measuring temperature:


1.	Fahrenheit	(32 - 212)
----	------------	------------

- 2. *Celsius* (0 100)
- 3. *Kelvin (absolute)* (273 373)
- To convert from one scale to another, the following relationships can be used:

$$K = {}^{\circ}C + 273$$

 ${}^{\circ}F = (1.8 \times {}^{\circ}C) + 32$
 ${}^{\circ}C = ({}^{\circ}F - 32) \div 1.8$

or alternately,

 $F = [(C+40) \times 1.8] - 40$ $C = [F+40) \div 1.8 - 40$

Examples:

1. The melting point of silver is 960.8°C. Convert to Kelvin.

 $K = {}^{\circ}C + 273$ K =

2. Pure iron melts at about 1800 K. What is this temperature in °C?

 $^{\circ}C = K - 273$ C =

3. On a winter day the temperature is 5°F outside. What is this temperature on the Celsius scale?

 $^{\circ}C = [^{\circ}F+40) \div 1.8]-40 =$

4. To make ice cream, rock salt is added to crushed ice to reach a temperature of -11° C. What is this temperature in Fahrenheit?

QUANTITY OF HEAT

- Different materials have different *capacities* for storing heat.
- The *specific heat* of a substance is the *amount of heat* required to change the temperature of *1 g* of that substance by *1 °C*.
- The amount of heat lost or gained by a system is determined by the following equation:

Heat=	mass of		(specific heat of substance)		(change in)	
	substar	nce	of substanc	e	temperature	
q =	(m)	X	(C)	X	(ΔT)	

The filling of hot apple pie may be too hot to eat, whereas the crust is not.

• Shown below are the specific heat of some common substances:

Substance	(cal/g°C)	(J/g°C)
Aluminum	0.214	0.897
Copper	0.0920	0.385
Iron	0.0308	0.129
Ammonia	0.488	2.04
Ethanol	0.588	2.46
Water	1.00	4.184

Specific Heat & Temperature Change:

- When heated, substances with *low specific heat* have greater increase in temperature than those with high specific heat.
- When cooled, substances with *low specific heat* get have greater decrease in temperature than those with high specific heat.

Specific heat and change in temperature are inversely proportional

Examples:

- Determine the amount of heat needed to raise the temperature of 200. g of water by 10.0 °C. (Specific heat of water is 4.184 J/g°C)
 - m = C = $\Delta T =$ q =
- 2. Calculate the specific heat of a solid if 1638 J of heat raises the temperature of 125 g of the solid from 25.0 to 52.6 °C.
 - m = C = ΔT = q =
- 3. Ethanol has a specific heat of 2.46 J/g°C. When 655 J are added to a sample of ethanol, its temperature rises from 18.2°C to 32.8°C. What is the mass in grams of the ethanol sample?
 - m = C = $\Delta T =$ q =