REVIEW QUESTIONS

Chapter 18

1. For each element below, use the information given to determine the number of protons, neutrons and electrons in its nucleus.

a)
$${}^{84}_{36}$$
Kr

$$p^+ =$$
_____ $n^0 =$ _____

b)
$$\frac{137}{56}$$
Ba

$$p^+ = \underline{\hspace{1cm}} n^0 = \underline{\hspace{1cm}}$$

c)
$$\frac{243}{95}$$
 Am

$$p^{+} = \underline{\hspace{1cm}} n^{0} = \underline{\hspace{1cm}}$$

2. Complete each equation below, and classify the type of decay:

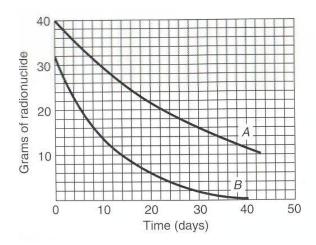
a)
$${}^8_5 B \longrightarrow \underline{\hspace{1cm}} + {}^0_{-1} e$$
 Type:

b)
$$^{210}_{84}$$
Po \longrightarrow ____+ $^{4}_{2}$ He Type:____

c)
$$^{60}_{27}$$
Co \longrightarrow $^{60}_{28}$ Ni + _____ Type:_____

3. Half-life of a radionuclide is 5 days. How many days will it require for a 160-g sample of this radionuclide to decay to 5 grams?

4. A sample of a particular radionuclide starts with a mass of 32 g. Twelve hours later, 0.5 g of this isotope remains. What is the half-life of this radionuclide?


5. For each pair of nuclides given, determine which is radioactive, and give a reason for your choice:

a) $^{17}_{9}$ F and $^{32}_{16}$ S Reason:_____

b) $_{26}^{56}$ Fe and $_{88}^{226}$ Ra Reason:

c) $^{23}_{11}$ Na and $^{20}_{9}$ F Reason:

6. Use the graph provided below to find the half-life of radionuclides A and B.

- 7. Write equations for the following decays:
 - a) Beta decay of $^{56}_{26}$ Fe
 - b) Alpha decay of $^{227}_{89}$ Ac

8. Determine the type of radiation given off in the following decay:

$$^{234}_{90}$$
Th \longrightarrow $^{230}_{88}$ Ra+ \longrightarrow $^{230}_{89}$ Ac+ \longrightarrow

9. Complete the following equations:

b)
$$^{10}B + n \longrightarrow \underline{\qquad} + \alpha$$

c)
56
Fe + _____ \longrightarrow 57 Co + β

d)
45
Sc + n \longrightarrow + 2 H

10. Calculate the nuclear binding energy of $_{26}^{56}$ Fe (in J/mol) from the following mass data:

$$_{26}^{56}Fe = 55.9349 \text{ g/mol}$$

$$n^0 = 1.0087 \text{ g/mol}$$

$$p^+ = 1.0073 \text{ g/mol}$$

$$e^- = 0.00055 \text{ g/mol}$$