REVIEW QUESTIONS Chapter 14

1.	Calculate the mass % of the following solutions: a) 25 g KCl in 125 g of water
	b) 2.0 g of KOH in 20.0 g of water
2.	How many grams of solute are present in 175 g of 1.80% (m/m) solution of NaCl?
3.	Calculate the molarity of the following solutions: a) 2.0 mol of glucose in 400. mL of solution.
	b) 4.0 g of KOH in 2.0 L of solution.
4.	Calculate the grams of solute needed to prepare 2.0 L of 1.5 M NaOH solution.

How many grams of AgNO ₃ are needed to prepare 1500. mL of a 0.240 M solution?
What volume of 0.300 M KCl will contain 15.3 g of KCl?
A patient received 2.0 g of NaCl in 8 hours. How many mL of a 0.90% (m/m) NaCl (saline) solution were delivered to the patient? Density of solution is 1.05 g/mL.
Calculate the freezing point of a solution prepared by dissolving 35.0 g of K_2SO_4 in 1000. g of water. (K_f = 1.86 °C/m)

- 9. A solution is prepared by dissolving 5.00 g of NaCl in 25.0 g of water.
 a) Calculate the mass % of NaCl in this solution.

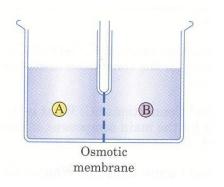
b) Calculate the molality of this solution.

c) Calculate the boiling point and freezing points of this solution. $(K_b=0.512 \text{ °C/m} \text{ and } K_f=1.86 \text{ °C/m})$

10. A solution of antifreeze contains 25% by mass ethylene glycol (C₂H₆O₂) in water. Calculate the boiling point and freezing point for this solution. ($K_b = 0.512$ °C/m and $K_f = 1.86 \, ^{\circ}\text{C/m}$

11. How many grams of ethyl alcohol (C_2H_5OH) are needed to drop the freezing temperature of 2.0 L of water to -10.0 °C? ($K_f = 1.86$ °C/m; 1 L water = 1 kg)

- 12. Which of the following solutions will have the greatest osmotic pressure? Explain.
 - $0.25\;M\;C_6H_{12}O_6$
 - 0.15 M NaCl
 - 0.15 M CaCl₂


13. Calculate the freezing point of an aqueous solution that boils at 102.5 °C. (K $_f$ = 1.86 °C/m and K $_b$ = 0.512 °C/m)

14. Two solutions, A and B, are separated by a semipermeable membrane as shown below. For each case below, determine which side rises due to osmotic pressure.

a)
$$\frac{A}{0.1M \text{ glucose}}$$

$$\frac{B}{0.5M \text{ glucose}}$$

- b) 1M NaCl
- $0.5M~K_2SO_4$
- c) 0.5M KCl
- 0.5M KBr
- d) 0.1M NaCl
- 0.1M glucose

15. Complete the equations below when each soluble ionic salt dissolves in water, and determine the *i* value for each:

a)
$$Ca(OH)_2$$
 (s) $\xrightarrow{H_2O}$

b) NaC₂H₃O₂ (s)
$$\xrightarrow{\text{H}_2\text{O}}$$

c)
$$NH_4Cl(s) \xrightarrow{H_2O}$$

d)
$$\text{Li}_2\text{CO}_3$$
 (s) $\xrightarrow{\text{H}_2\text{O}}$

e) Na₃PO₄ (s)
$$\xrightarrow{\text{H}_2\text{O}}$$

16. In winter, after a snowstorm, salt (NaCl) is spread to melt the ice on the road. How many grams of salt must be added to 1000. g of ice to decrease its freezing point to -5.0 °C? ($K_f = 1.86$ °C/m)

- 17. For each pair of solutions listed below, determine which will have the higher boiling point:
 - a) 1.5 M NaCl and 0.5 M Al(NO₃)₃
 - b) 2.0 M NaOH and $2.0 \text{ M C}_6\text{H}_{12}\text{O}_6$
 - c) 0.4 M Na₂CO₃ and 0.7 M KCl
- 18. Both methanol (CH₃OH) and ethylene glycol (C₂H₆O₂) are used as antifreeze. Which is more effective—that is, which produces a lower freezing point if equal amounts of each are added to the same amount of water?