ACIDS & BASES

- Many common substances in our daily lives are **acids and bases**. **Oranges, lemons and vinegar** are examples of **acids**. In addition, our stomachs contain acids that help digest foods. **Antacid** tablets taken for heartburn and **ammonia** cleaning solutions are examples of **bases**.
- General properties associated with acids include the following:
 - \succ sour taste
 - change color of litmus from blue to red
 - \blacktriangleright react with metals to produce H₂ gas
 - react with bases to produce salt and water
- General properties associated with bases include the following:
 - ➢ bitter taste
 - slippery soapy feeling
 - change color of litmus from red to blue
 - ➤ react with acids to produce salt and water
- The most common definition of acids and bases was formulated by the Swedish chemist Svante **Arrhenius** in 1884.
- According to the Arrhenius definition,

Acids are substances that produce hydronium ion (H₃O⁺) in aqueous solution

 $HCl(g) + H_2O(l) \longrightarrow H_3O^+(aq) + Cl^-(aq)$

Commonly written as

HCl (g) $\xrightarrow{H_2O}$ H⁺ (aq) + Cl⁻ (aq) polar covalent

Bases are substances that produce hydroxide ion (OH⁻) in aqueous solution

NaOH (s) $\xrightarrow{H_2O}$ Na⁺ (aq) + OH⁻ (aq)

ionic compound

 $NH_3 (aq) + H_2O (l) \longrightarrow NH_4^+ (aq) + OH^- (aq)$

ACID & BASE STRENGTH

- According to the **Arrhenius** definition, the **strength** of acids and bases is based on the amount of their **ionization** in water.
- Strong acids and bases are those that ionize completely in water.
- Strong acids and bases are **strong electrolytes**.

HCl (aq) \longrightarrow H⁺ (aq) + Cl⁻ (aq)

NaOH (s) $\xrightarrow{H_2O}$ Na⁺ (aq) + OH⁻ (aq)

- Weak acids and bases are those that ionize partially in water.
- Weak acids and bases are **weak electrolytes**.

$$HC_2H_3O_2 \xleftarrow{H_2O} H^+ (aq) + C_2H_3O_2^- (aq)$$

$$NH_3$$
 (aq) + H_2O (l) $\implies NH_4^+$ (aq) + OH^- (aq)

COMMON STRONG ACIDS & BASES							
HCl	Hydrochloric acid	LiOH	Lithium hydroxide				
HBr	Hydrobromic acid	NaOH	Sodium hydroxide				
HI	Hydroiodic acid	KOH	Potassium hydroxide				
HNO ₃	Nitric acid	$Ba(OH)_2$	Barium hydroxide				
H_2SO_4	Sulfuric acid						
COMMON WEAK ACIDS & BASES							
$HC_2H_3O_2$	Acetic acid	NH ₃	Ammonia				
H_2CO_3	Carbonic acid	$CO(NH_2)_2$	Urea				
HF	Hydrofluoric acid						
HCN	Hydrocyanic acid						
H_2S	Hydrosulfuric acid						

BRØNSTED-LOWRY ACIDS & BASES

- The Arrhenius definition of acids and bases is limited to aqueous solutions.
- A broader definition of acids and bases was developed by **Brønsted and Lowry** in the early 20th century.
- According to **Brønsted-Lowry** definition, an **acid** is a **proton donor**, and a **base is a proton acceptor**.

 $\begin{array}{ccc} HCl (g) + H_2O (l) & \longrightarrow & H_3O^+ (aq) + Cl^- (aq) \\ (Acid) & (Base) \\ \\ NH_3 (aq) + H_2O (l) & \longrightarrow & NH_4^+ (aq) + OH^- (aq) \\ (Base) & (Acid) \end{array}$

- A substance that can act as a **Brønsted-Lowry acid and base** (such as **water**) is called **amphiprotic**.
- In Brønsted-Lowry definition, any pair of molecules or ions that can be interconverted by transfer of a proton is called conjugate acid-base pair.

 $\begin{array}{cccc} HCl (g) + H_2O (l) & \longrightarrow & H_3O^+ (aq) + & Cl^- (aq) \\ (Acid) & (Base) & (Conjugate & (Conjugate \\ & acid of water) & base of HCl) \\ \\ NH_3 (aq) + H_2O (l) & \longrightarrow & NH_4^+ (aq) + & OH^- (aq) \\ (Base) & (Acid) & (Conjugate & (Conjugate \\ & acid of NH_2) & base of water) \end{array}$

BRØNSTED-LOWRY ACIDS & BASES

Examples:

1. Identify the conjugate acid-base pairs for each reaction shown below:

 $H_2O \ + \ Cl^- \ \rightarrow \ HCl \ + \ OH^-$

 $C_6H_5OH \hspace{0.1 in} + \hspace{0.1 in} C_2H_5O^{-} \hspace{0.1 in} \rightarrow \hspace{0.1 in} C_6H_5O^{-} \hspace{0.1 in} + \hspace{0.1 in} C_2H_5OH$

2. Write the formula for the conjugate acid for each base shown:

 HS^-

 NH_3

 CO_3^{2-}

3. Write the formula for the conjugate base for each acid shown:

HI

CH₃OH

 HNO_3

ACID & BASE STRENGTH

• The strength of acids and bases and their conjugates can be tabulated as shown below:

Acid		Conjugate Bas	e
Strong Acids			
Hydroiodic acid	HI	I_	Iodide ion
Hydrobromic acid	HBr	Br ⁻	Bromide ion
Perchloric acid	HClO ₄	ClO ₄ ⁻	Perchlorate ion
Hydrochloric acid	HCl	CI ⁻	Chloride ion
Sulfuric acid	H ₂ SO ₄	HSO_4^-	Hydrogen sulfate ion
Nitric acid	HNO3	NO ₃ ⁻	Nitrate ion
Hydronium ion	H_3O^+	H ₂ O	Water
Weak Acids			
Hydrogen sulfate ion	HSO ₄ ⁻	SO4 ²⁻	Sulfate ion
Phosphoric acid	H ₃ PO ₄	$H_2PO_4^-$	Dihydrogen phosphate ion
Nitrous acid	HNO ₂	NO_2^-	Nitrite ion
Hydrofluoric acid	HF	F-	Fluoride ion
Acetic acid	HC2H3O2	$C_2H_3O_2^-$	Acetate ion
Carbonic acid	H ₂ CO ₃	HCO ₃ ⁻	Bicarbonate ion
Hydrosulfuric acid	H ₂ S	HS ⁻	Hydrogen sulfide ion
Dihydrogen phosphate ion	$H_2PO_4^-$	HPO_4^{2-}	Hydrogen phosphate ion
Ammonium ion	NH4 ⁺	NH ₃	Ammonia
Hydrocyanic acid	HCN	CN	Cyanide ion
Bicarbonate ion	HCO ₃ ⁻	CO32-	Carbonate ion
Methylammonium ion	$CH_3 {-\!\!\!-} NH_3{}^+$	CH3-NH2	Methylamine
Hydrogen phosphate ion	HPO ₄ ²⁻	PO4 ³⁻	Phosphate ion
Water	H ₂ O	OH-	Hydroxide ion

- Note that strong acids have weak conjugate bases, and weak acids have strong conjugate bases.
- In an acid-base reaction, there are two acids and two bases. Using the table above, the relative strength of the two acids and bases can be determined in the reaction. As a result, the reaction proceeds in the direction of the weaker acid and weaker base to reach equilibrium.
- For example, in the reaction of H₂SO₄ and H₂O (shown below), the reaction proceeds in the forward direction since H₃O⁺ and HSO₄⁻ are the weaker acid and base in the reaction:

H_2SO_4 (aq)	$+ H_2O(l)$ —	\rightarrow H ₃ O ⁺ (aq) +	- HSO_4^- (aq)	
stronger	stronger	weaker	weaker	Mostly products
acid	base	acid	base	

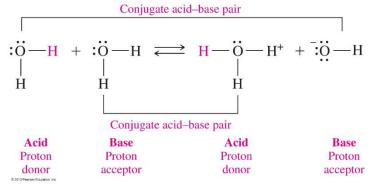
• And in the reaction of CO₃²⁻ and H₂O (shown below), the reaction proceeds in the reverse direction since H₂O and CO₃²⁻ are the weaker acid and base in the reaction:

CO_{2}^{2-} (aq)	+ $H_2O(l) \iff$	HCO_3^- (aq) +	OH ⁻ (aq)	
weaker	weaker	weaker	weaker	Mostly reactants
base	acid	acid	base	

Examples:

1. Is the forward or reverse direction favored in the reaction shown below:

$$HF(aq) + H_2O(l) \longrightarrow H_3O^+(aq) + F^-(aq)$$


2. Predict whether each of the following reactions contains mostly reactants or products at equilibrium:

a) $NH_4^+(aq) + H_2O(l) \implies NH_3(aq) + H_3O^+(aq)$

b)
$$HNO_2(aq) + NH_3(aq) \implies NO_2^-(aq) + NH_4^+(aq)$$

IONIZATION OF WATER

- As noted previously, water can act both as an acid and a base.
- In pure water, one **water** molecule **donates a proton** to another water molecule to produce **ions**.

• In pure water, the **transfer of protons** between water molecules produces **equal numbers of H₃O⁺ and OH⁻ ions**. However, the number of ions produced in pure water is very small, as indicated below:

Pure water $[H_3O^+] = [OH^-] = 1.0 \times 10^{-7} M$

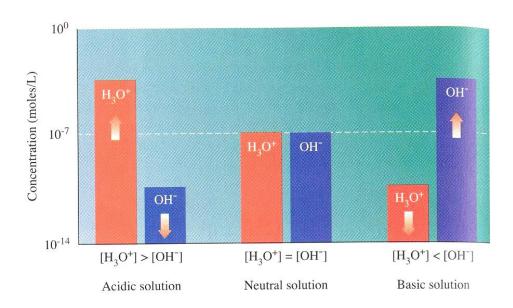
• When the concentrations of H₃O⁺ and OH⁻ are multiplied together, the ionproduct constant (K_w) is formed.

$$K_w = [H_3O^+] \times [OH^-]$$

= (1.0 x 10⁻⁷ M) x (1.0 x 10⁻⁷ M) = 1.0 x 10⁻¹⁴

• All aqueous solutions have H_3O^+ and OH^- ions. An increase in the concentration of one of the ions will cause an equilibrium shift that causes a decrease in the other one.

ACIDIC & BASIC SOLUTIONS


- When [H₃O⁺] and [OH⁻] are equal in a solution, it is neutral.
- When $[H_3O^+]$ is greater than $[OH^-]$ in a solution, it is acidic.

For example, if $[H_3O^+]$ is 1.0 x 10^{-4} M, then $[OH^-]$ would be 1.0 x 10^{-10} M.

$$\left[OH^{-} \right] = \frac{K_{w}}{\left[H_{3}O^{+} \right]} = \frac{1.0 \text{ x } 10^{-14}}{1.0 \text{ x } 10^{-4}} = 1.0 \text{ x } 10^{-10} \text{ M}$$

• When **[OH⁻]** is **greater** than **[H₃O⁺]** in a solution, it is **basic**.

For example, if $[OH^-]$ is 1.0 x 10^{-6} M, then $[H_3O^+]$ would be 1.0 x 10^{-8} M.

$$[H_3O^+] = \frac{K_w}{[OH^-]} = \frac{1.0 \times 10^{-14}}{1.0 \times 10^{-6}} = 1.0 \times 10^{-8} M$$

ACIDIC & BASIC SOLUTIONS

Examples:

1. Calculate the $[OH^-]$ in a solution with $[H_3O^+] = 2.3 \times 10^{-4}$ M. Classify the solution as acid or basic.

$$\left[OH^{-}\right] = \frac{K_{w}}{\left[H_{3}O^{+}\right]} =$$

2. Calculate the $[H_3O^+]$ in a solution with $[OH^-] = 2.3 \times 10^{-4} \text{ M}$. Classify the solution as acid or basic.

$$\left[\mathrm{H}_{3}\mathrm{O}^{+}\right] = \frac{\mathrm{K}_{\mathrm{w}}}{\left[\mathrm{OH}^{-}\right]} =$$

3. Calculate the $[OH^-]$ in a solution with $[H_3O^+] = 5.8 \times 10^{-8}$ M. Classify the solution as acid or basic.

4. Calculate the $[H_3O^+]$ in a solution with $[OH^-] = 1.3 \times 10^{-2}$ M. Classify the solution as acid or basic.

THE pH SCALE

• The **acidity** of a solution is commonly measured on a **pH scale**.

$$\mathbf{pH} = -\log\left[\mathbf{H}_{3}\mathbf{O}^{+}\right]$$

• The **pH scale** ranges from **0-14**, where **acidic** solutions are **less than 7** and **basic** solutions are **greater than 7**.

Acidic solutions	р Н < 7	$[\rm{H}_{3}O^{+}] > 1.0 \ x \ 10^{-7}$
Neutral solutions	$\mathbf{pH} = 7$	$[\mathbf{H}_{3}\mathbf{O}^{+}] = 1.0 \text{ x } 10^{-7}$
Basic solutions	pH > 7	$[H_3O^+] < 1.0 \times 10^{-7}$

• When calculating pH, note that the number of decimal places in the pH value is the same as the number of significant figures in the [H₃O⁺]. For example:

$$[H_3O^+] = 1.0 \times 10^{-2} \qquad pH = 2.00$$

$$Two SFs \qquad Two SFs$$

TABLE 10.7	A Comparison of $[H_3O]$	$^+$], [OH $^-$], and Corresponding pH Values	s at 25 °C
$[{\rm H_{3}0^{+}}]$	pH	[OH ⁻]	•
100	0	10 ⁻¹⁴	
10^{-1}	1	10 ⁻¹³	
10^{-2}	2	10^{-12}	
10^{-3}	3	10^{-11}	Acidic
10^{-4}	4	10^{-10}	
10^{-5}	5	10 ⁻⁹	
10^{-6}	6	10 ⁻⁸	
10^{-7}	7	10 ⁻⁷	Neutral
10^{-8}	8	10 ⁻⁶	
10^{-9}	9	10^{-5}	
10^{-10}	10	10 ⁻⁴	
10^{-11}	11	10 ⁻³	Basic
10^{-12}	12	10^{-2}	
10^{-13}	13	10 ⁻¹	-
10 ⁻¹⁴	14	10^{0}	

© 2013 Pearson Education, Inc.

THE pH SCALE

Examples:

1. The $[H_3O^+]$ of a liquid detergent is 1.4 x 10⁻⁹ M. Calculate its pH.

 $pH = -\log [H_3O^+] = -\log [1.4 \times 10^{-9}] = -(-8.85) = 8.85$

2. The pH of black coffee is 5.3. Calculate its $[H_3O^+]$.

 $[H_3O^+] = antilog (-pH) = 10^{-pH} = 10^{-5.3} = 5 \times 10^{-6}$

3. The $[H_3O^+]$ of a solution is 3.5 x 10^{-3} M. Calculate its pH.

4. The $[OH^-]$ of a cleaning solution is 1.0×10^{-5} M. What is the pH of this solution?

$$[H_3O^+] = pH =$$

5. What is the pH of a solution prepared by dissolving 2.5 g of HCl in water to make 425 mL of solution?

REACTIONS OF ACIDS & BASES

• The most important reaction of acids and bases is called **neutralization**. In these reactions an acid combines with a base to form a **salt and water**. For example:

 $\begin{array}{ccc} HCl~(aq) + & NaOH~(aq) & \longrightarrow & NaCl~(aq) + & H_2O~(l) \\ acid & base & salt & water \end{array}$

• Acids also react with **carbonates and bicarbonates** to produce **salt, carbon dioxide gas and water**. For example:

 $2 \operatorname{HCl}(\operatorname{aq}) + \operatorname{Na}_2 \operatorname{CO}_3(\operatorname{aq}) \longrightarrow 2 \operatorname{NaCl}(\operatorname{aq}) + \operatorname{CO}_2(\operatorname{g}) + \operatorname{H}_2 O(\operatorname{I})$

HCl (aq) + NaHCO₃ (aq) \longrightarrow NaCl (aq) + CO₂ (g) + H₂O (l)

• Acids also react with active metals to produce a salt and hydrogen gas. For example:

 $Mg(s) + 2 HCl(aq) \longrightarrow MgCl_2(aq) + H_2(g)$

Examples:

Complete and balance each of the following equations:

1. $ZnCO_3(aq) + HCl(aq) \rightarrow$


2. HNO₃ (aq) + Mg(OH)₂ (aq)
$$\rightarrow$$

3. Al (s) + HCl (aq)
$$\rightarrow$$

TITRATION

• Determination of concentration of an acid or base from the known concentration of the other is called **titration**.

- In a titration, a measured volume of the acid in a flask and add a few drops of an indicator, such as phenolphtalein. (Solution is clear)
- Next, a solution of NaOH with a known molarity is added to the acid dropwise, using a buret.
- When neutralization is complete, the indicator changes color to pink. This is called *endpoint*.
- Based on the measured volume of the NaOH solution added and its molarity, the concentration of the acid can be calculated.

TITRATION

- When solving titration problems,
 - 1. Write a balanced equation.
 - 2. Determine moles of known from concentration and volume.
 - 3. Determine moles of unknown based on reaction stoichiometry.
 - 4. Determine the concentration of unknown from moles and volume titrated.

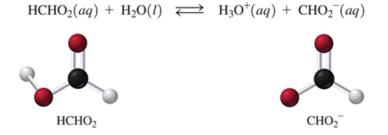
Examples:

1. If 32.6 mL of 1.85 M NaOH is required to titrate 25.0 mL of an HCl solution to the end point, what is the molarity of HCl?

Bal. Eq.	HCl	+	NaOH	\rightarrow	NaCl	+	H ₂ O
Vol (mL)							
Conc. (M)							
mol NaOH							
mol HCl							
Conc. HCl							

Examples:

2. How many mL of 2.15 M KOH are required to titrate 25.0 mL of 0.300 M HC₂H₃O₂?


Bal. Eq.	
Vol (mL)	
Conc. (M)	
mol HAc	
mol NaOH	
Vol NaOH (mL)	

3. If 50.0 mL of 0.300 M NaOH solution is required to titrate 20.0 mL of sulfuric acid, what is the molarity of the acid?

Bal. Eq.	
Vol (mL)	
Conc. (M)	
mol NaOH	
mol H ₂ SO ₄	
Conc. H ₂ SO ₄	

ACID DISSOCIATION CONSTANT

- As discussed earlier, the strength of an acid depends on how much it dissociates in water. Because strong acids dissociate completely in water, the reaction is not considered reversible.
- However, because weak acids dissociate partially in water, the ion products reach an equilibrium with the undissociated weak acid molecules. For example, formic acid (HCHO₂) is a weak acid that dissociates to form H_3O^+ and formate ion (CHO₂⁻).

• The dissociation of weak acids can be quantified with the *acid dissociation constant* (K_a), as shown below:

$$K_{a} = \frac{[H_{3}O^{+}][CHO_{2}^{-}]}{[HCHO_{2}]} = 1.8 \times 10^{-4}$$

- The acid dissociation constant for formic acid has been experimentally determined to be 1.8x10⁻⁴ at 25°C. This value is relatively small, which confirms that the equilibrium mixture of this acid in water contains mostly reactants and small amount of products.
- The magnitude of the acid dissociation constant (K_a) is a measure of the degree of ionization of the acid. In general, weak acids have small K_a values, while strong acids that are completely dissociated have large K_a values.
- The table on the right lists K_a values for some common weak acids. The greater the K_a value, the stronger the acid.

Acids		Ka
Phosphoric acid	H ₃ PO ₄	$7.5 imes 10^{-3}$
Nitrous acid	HNO ₂	$4.5 imes 10^{-4}$
Hydrofluoric acid	HF	$3.5 imes 10^{-4}$
Formic acid	HCHO ₂	$1.8 imes 10^{-4}$
Acetic acid	$HC_2H_3O_2$	$1.8 imes 10^{-5}$
Carbonic acid	H_2CO_3	$4.3 imes 10^{-7}$
Hydrosulfuric acid	H_2S	$9.1 imes 10^{-8}$
Dihydrogen phosphate	$H_2PO_4^-$	$6.2 imes 10^{-8}$
Hydrocyanic acid	HCN	$4.9 imes 10^{-10}$
Hydrogen carbonate	HCO ₃ ⁻	$5.6 imes 10^{-11}$
Hydrogen phosphate	HPO_4^{2-}	$2.2 imes 10^{-13}$

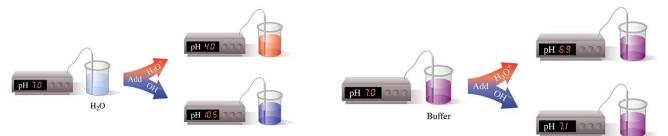
ACID DISSOCIATION CONSTANT

Examples:

1. Write the expression of the acid dissociation constant for nitrous acid (HNO₂), a weak acid.

2. Consider the following acids and their dissociation constants:

$H_2SO_3(aq) + H_2O(l) \iff H_3O^+(aq) + HSO_3^-(aq)$	$K_a = 1.2 \times 10^{-2}$
$\mathrm{HS}^{-}\left(\mathrm{aq}\right) + \mathrm{H}_{2}\mathrm{O}\left(\mathrm{aq}\right) \implies \mathrm{H}_{3}\mathrm{O}^{+}\left(\mathrm{aq}\right) + \mathrm{S}^{2-}\left(\mathrm{aq}\right)$	$K_a = 1.3 \times 10^{-19}$

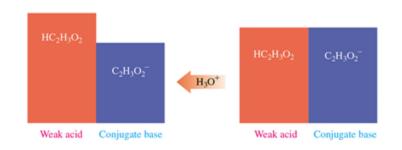

a) Which is the strongest acid, H_2SO_3 or HS^- ?

b) Identify the two conjugate bases for these two acids?

- c) Which is the weaker and which is the stronger conjugate base? Explain.
- 3. For each of the following acids: 1) H_2S ; 2) H_3PO_4
 - a) Write the formula for the conjugate base.
 - b) Write the K_a expression
 - c) Which is the weaker acid?

BUFFERS

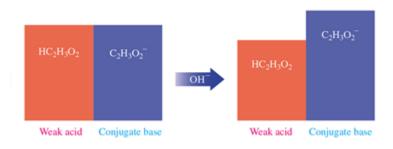
• The pH of water and most solutions changes dramatically when a small amount of acid or base is added. However, if a small amount of acid or base is added to a *buffer solution*, there is little change in the pH. Many biological systems, such as blood, use buffers to maintain a narrow pH range for proper functioning.



- In a buffer, an acid must be present to react with any added OH^- , and a base must be added to react with any added H_3O^- . However, the acid and base must not neutralize each other. Therefore, a combination of an acid-base conjugate pair is used as buffers.
- For example, a common buffer can be made from the weak acid acetic acid $(HC_2H_3O_2)$ and its salt, sodium acetate $(NaC_2H_3O_2)$. Acetic acid dissociates in water to form H_3O^+ and a small amount of $C_2H_3O_2^-$. The addition of sodium acetate provides a much larger concentration of acetate ion $(C_2H_3O_2^-)$ that is necessary for good buffering capability.

 $\begin{array}{rll} HC_2H_3O_2\ (aq) & + & H_2O\ (l) & \Longleftrightarrow & H_3O^+\ (aq) & + & C_2H_3O_2^-\ (aq) \\ Large \ amount & & Large \ amount \end{array}$

• When a small amount of acid is added to this buffer, the added H_3O^+ reacts with the acetate ion present in solution causing the equilibrium to shift towards the reactants. As a result, $C_2H_3O_2^-$ concentration decreases slightly and $HC_2H_3O_2$ increases slightly, but the pH is maintained.


$$HC_{2}H_{3}O_{2}\left(aq\right) \quad + \quad H_{2}O\left(l\right) \quad \longleftarrow \quad H_{3}O^{+}\left(aq\right) \quad + \quad C_{2}H_{3}O_{2}^{-}\left(aq\right)$$

BUFFERS

• When a small amount of base is added to this buffer, the added OH⁻ reacts with the acetic acid present in solution causing the equilibrium to shift towards the products. As a result, $C_2H_3O_2^-$ concentration increases slightly and $HC_2H_3O_2$ decreases slightly, but the pH is maintained.

 $HC_{2}H_{3}O_{2}(aq) + OH^{-}(aq) \longrightarrow H_{2}O(l) + C_{2}H_{3}O_{2}^{-}(aq)$

To calculate the pH of a buffer solution, follow the guide below. For example, in the acetic acid/acetate buffer discussed previously, K_a expression can be rearranged to find the [H₃O⁺]:

• The $[H_3O^+]$ thus calculated can then be used to calculate the pH of the buffer.

Examples:

- 1. Which of the following represents a buffer system? Explain
 - a) NaOH and NaCl
 - b) HF and KF
 - c) H₂CO₃ and NaHCO₃
 - d) KCl and NaCl

of a Buffer STEP 1 State the given and needed quantities. STEP 2 Write the K_a expression and rearrange for $[H_3O^+]$.

STEP 3 Substitute [HA] and $[A^-]$ into the K_a expression.

STEP 4Use $[H_3O^+]$ to calculate pH.

Examples (cont'd):

2. Consider the buffer system shown below:

 $HNO_2(aq) + H_2O(l) \implies H_3O^+(aq) + NO_2^-(aq)$

- a) Write an equation to describe the reaction that takes place when small amount of acid is added to this buffer.
- b) Write an equation to describe the reaction that takes place when small amount of base is added to this buffer.
- c) Nitrous acid (HNO₂) has a $K_a = 4.5 \times 10^{-4}$. Calculate the pH of a buffer containing 0.10 M HNO₂ and 0.12 M NO₂⁻.

- 3. In blood, a buffer system utilizing carbonic acid (H_2CO_3) and sodium bicarbonate (NaHCO₃) is used to regulate the pH. A typical blood buffer contains $1.2x10^{-3}M$ carbonic acid and $2.4x10^{-2}$ M sodium bicarbonate. The K_a for carbonic acid is $7.9x10^{-7}$.
 - a) Calculate the pH of this buffer system.
 - b) Write equations for the reactions that occur when small amounts of acid and base are added to this buffer.