Stoichiometry Calculation Practice Worksheet

1. Calculate the number of moles of NaOH that are needed to react with 500.0 g of H_2SO_4 according to the following equation:

$$H_2SO_4 + 2 NaOH \rightarrow Na_2SO_4 + 2 H_2O$$

2. Calculate the mass of NH₃ that can be produced from the reaction of 125 g of NCl₃ according to the following equation:

$$NCl_3 + 3 H_2O \rightarrow NH_3 + 3 HOCl$$

3. What mass of CO_2 can be produced from the reaction of 25.0 g of C_3H_8 with 75.0 g of O_2 according to the following equation:

$$C_3H_8 + 5 O_2 \rightarrow 3 CO_2 + 4 H_2O$$

4. How many grams of SO_2 are produced when 152 g of CS_2 react with 48.0 g of O_2 according to the following equation:

$$CS_2 + 3 O_2 \rightarrow CO_2 + 2 SO_2$$

5. When 50.0 g of MgCO₃ react completely with H₃PO₄, as shown below,15.8 g of CO₂ are produced. What is the percent yield for this reaction?

$$2 H_3PO_4 + 3 MgCO_3 \rightarrow Mg_3(PO_4)_2 + 3 CO_2 + 3 H_2O$$