FINAL EXAM REVIEW

1. Calculate the mass percent $(\mathrm{m} / \mathrm{m})$ of a solution containing 25 g of KCl in $125 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$.
2. Calculate the mass of solute needed to prepare each 350 mL of 1.8 M NaOH solution.
3. What volume (mL) of a 4.0 M solution of HCl contains 12 g of solute?
4. For each reaction shown below, determine the Brønsted-Lowry acid and base and their conjugates:
a) $\mathrm{H}_{3} \mathrm{BO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{H}_{2} \mathrm{BO}_{3}{ }^{-}$
b)

5. Identify the Brønsted-Lowry acid for each base shown below:
a) $\quad \mathrm{NO}_{3}^{-}$
b) $\quad \mathrm{SO}_{4}{ }^{2-}$
6. Identify the Brønsted-Lowry base for each acid shown below:
a) $\quad \mathrm{NH}_{3}$
b) $\quad \mathrm{HS}^{-}$
7. Complete the missing information in the table below:

$\left[\mathbf{H}_{3} \mathbf{O}^{+}\right]$	$\left[\mathbf{O H}^{-}\right]$	Acidic/Basic
	1.0×10^{-12}	
	4.2×10^{-4}	
6.5×10^{-8}		

8. Identify each of the substances below as strong electrolyte, weak electrolyte or non-electrolyte:
a) $\quad \mathrm{KCl}$
b) $\quad \mathrm{HNO}_{3}$
c) $\quad \mathrm{CH}_{3} \mathrm{OH}$
d) HF
9. What are the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $[\mathrm{OH}]$ for a solution with a pH of 4.10.
10. Match each of the solutions below with an expected pH value (assume the same concentration for all solutions):

$[\mathrm{pH}=5.8$	A) HCl
$\ldots \mathrm{pH}=12.8$	B) HF
$\ldots \mathrm{pH}=3.1$	C) NaOH
$\ldots \mathrm{pH}=8.4$	D) NH_{3}

11. A gas sample with a volume of 730 mL and pressure of 830 mmHg is at a temperature of $30.0^{\circ} \mathrm{C}$. How many moles of gas does this sample contain?
12. 7.6 moles of a gas in a container with a movable piston is heated from $100.0^{\circ} \mathrm{C}$ to $175.0^{\circ} \mathrm{C}$. If the pressure remains constant, what is the new volume of the gas if it initially occupied 2.5 L ?
13. How many grams of nitrogen gas has the same volume as 120 g of Ar gas at the same temperature and pressure?

ANSWERS:

1) 17%
2) 25 g
3) 82 mL
4) For answers see instructor or tutors
5) For answers see instructor or tutors
6) For answers see instructor or tutors
7)

$\left[\mathrm{H}_{3} \mathbf{O}^{+}\right]$	$\left[\mathrm{OH}^{-}\right]$	Acidic/Basic
$\mathbf{1 . 0 \times 1 0}{ }^{-2}$	1.0×10^{-12}	Acidic
$\mathbf{2 . 4 \times 1 0} \mathbf{1 0}^{-11}$	4.2×10^{-4}	Basic
6.5×10^{-8}	$\mathbf{1 . 5 ~ X ~ 1 0}^{-7}$	Basic

8) For answers see instructor or tutors
9) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=7.9 \times 10^{-5} \mathrm{M}$
$\left[\mathrm{OH}^{-}\right]=1.3 \times 10^{-10} \mathrm{M}$
10) $\mathrm{A}=3.1 ; \mathrm{B}=5.8 ; \mathrm{C}=12.8 ; \mathrm{D}=8.4$
11) 0.032 mol
12) 3.0 L
13) 84 g
