ACIDS & BASES

- Many common substances in our daily lives are **acids and bases**. **Oranges, lemons and vinegar** are examples of **acids**. In addition, our stomachs contain acids that help digest foods. **Antacid** tablets taken for heartburn and **ammonia** cleaning solutions are examples of **bases**.
- General properties associated with acids include the following:
 - \succ sour taste
 - change color of litmus from blue to red
 - \blacktriangleright react with metals to produce H₂ gas
 - react with bases to produce salt and water
- General properties associated with bases include the following:
 - ➢ bitter taste
 - slippery soapy feeling
 - change color of litmus from red to blue
 - ➢ react with acids to produce salt and water
- The most common definition of acids and bases was formulated by the Swedish chemist Svante **Arrhenius** in 1884.
- According to the Arrhenius definition,
 - \blacktriangleright Acids are substances that produce hydronium ion (H₃O⁺) in aqueous solution

 $HCl(g) + H_2O(l) \longrightarrow H_3O^+(aq) + Cl^-(aq)$

Commonly written as

HCl (g) $\xrightarrow{\mathbf{H}_2\mathbf{0}}$ **H**⁺ (aq) + Cl⁻ (aq)

Polar Covalent

▶ Bases are substances that produce hydroxide ion (OH⁻) in aqueous solution

NaOH (s) $\xrightarrow{H_2O}$ Na⁺ (aq) + OH⁻ (aq)

Ionic compound


$$NH_3(aq) + H_2O(l) \longrightarrow NH_4^+(aq) + OH^-(aq)$$

BRØNSTED-LOWRY ACIDS & BASES

- The Arrhenius definition of acids and bases is limited to aqueous solutions.
- A broader definition of acids and bases was developed by **Brønsted and Lowry** in the early 20th century.
- According to **Brønsted-Lowry** definition, an **acid** is a **proton donor**, and a **base is a proton acceptor**.

HCl (g) + H₂O (l) \rightarrow H₃O⁺ (aq) + Cl⁻ (aq) (acid) (base) NH₃ (aq) + H₂O (l) \rightarrow NH₄⁺ (aq) + OH⁻ (aq) (base) (acid)

- A substance that can act as a **Brønsted-Lowry acid and base** (such as **water**) is called **amphiprotic**.
- In Brønsted-Lowry definition, any pair of molecules or ions that can be interconverted by transfer of a proton is called conjugate acid-base pair.

BRØNSTED-LOWRY ACIDS & BASES

Examples:

1. Identify the conjugate acid-base pairs for each reaction shown below:

 $H_2O \ + \ Cl^- \ \rightarrow \ HCl \ + \ OH^-$

 $C_6H_5OH \hspace{0.1 in} + \hspace{0.1 in} C_2H_5O^{-} \hspace{0.1 in} \rightarrow \hspace{0.1 in} C_6H_5O^{-} \hspace{0.1 in} + \hspace{0.1 in} C_2H_5OH$

2. Write the formula for the conjugate acid for each base shown:

 HS^-

 NH_3

 CO_3^{2-}

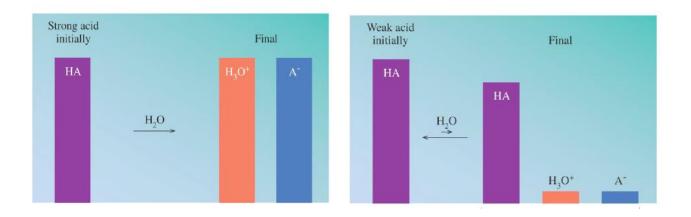
3. Write the formula for the conjugate base for each acid shown:

HI

CH₃OH

 HNO_3

ACID & BASE STRENGTH


- According to the **Arrhenius** definition, the **strength** of acids and bases is based on the amount of their **ionization** in water.
- Strong acids and bases are those that ionize completely in water.
- Strong acids and bases are **strong electrolytes**.

HCl (aq) \longrightarrow H⁺ (aq) + Cl⁻ (aq) NaOH (s) $\xrightarrow{H_2O}$ Na⁺ (aq) + OH⁻ (aq)

- Weak acids and bases are those that **ionize partially** in water, and are therefore written as *reversible* reactions (indicated by *⇐*→).
- Weak acids and bases are weak electrolytes.

$$HC_2H_3O_2 \iff H^+ (aq) + C_2H_3O_2^- (aq)$$

$$NH_{3}$$
 (aq) + $H_{2}O(l) \implies NH_{4}^{+}$ (aq) + OH^{-} (aq)

Ionization of Strong vs. Weak acids

ACID & BASE STRENGTH

• Listed below are the formulas and names of common acids and bases, and comparison of their characteristics.

HCl	Hydrochloric acid	LiOH	Lithium hydroxide
HBr	Hydrobromic acid	NaOH	Sodium hydroxide
HI	Hydroiodic acid	KOH	Potassium hydroxide
HNO ₃	Nitric acid	Ca(OH) ₂	Calcium hydroxide
H_2SO_4	Sulfuric acid	Ba(OH) ₂	Barium hydroxide
	<mark>COMMON WE</mark>	AK ACIDS &	BASES
HC ₂ H ₃ O ₂	COMMON WE	AK ACIDS & NH ₃	BASES Ammonia
HC ₂ H ₃ O ₂ H ₂ CO ₃			
	Acetic acid	NH ₃	Ammonia
H ₂ CO ₃	Acetic acid Carbonic acid	NH ₃	Ammonia

Characteristic	Acids	Bases
Reaction: Arrhenius	Produce H ⁺	Produce OH ⁻
Reaction: Brønsted–Lowry	Donate H ⁺	Accept H ⁺
Electrolytes	Yes	Yes
Taste	Sour	Bitter, chalky
Feel	May sting	Slippery
Litmus	Red	Blue
Phenolphthalein	Colorless	Pink
Neutralization	Neutralize bases	Neutralize acids

IONIZATION OF WATER

- As noted previously, water can act both as an acid and a base.
- In pure water, one **water** molecule **donates a proton** to another water molecule to produce **ions**.

H_2O +	$H_2O \equiv$	\implies H ₃ O ⁺ +	OH^-
Base	Acid	Acid	Base
Proton	Proton	Proton	Proton
acceptor	donor	donor	acceptor

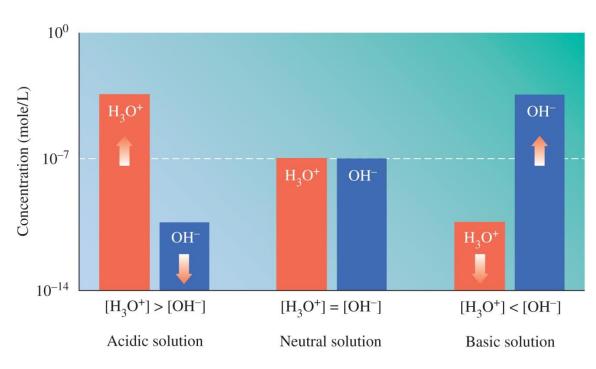
• In pure water, the **transfer of protons** between water molecules produces **equal numbers of H₃O⁺ and OH⁻ ions**. However, the number of ions produced in pure water is very small, as indicated below:

Pure water \Rightarrow [H₃O⁺] = [OH⁻] = 1.0 x 10⁻⁷ M

• When the concentrations of H₃O⁺ and OH⁻ are multiplied together, the ionproduct constant (K_w) is formed.

 $K_{w} = [H_{3}O^{+}] \times [OH^{-}]$ $= (1.0 \times 10^{-7} \text{ M}) \times (1.0 \times 10^{-7} \text{ M}) = 1.0 \times 10^{-14}$

• All aqueous solutions have H₃O⁺ and OH⁻ ions. An increase in the concentration of one of the ions will cause an equilibrium shift that causes a decrease in the other one.


ACIDIC & BASIC SOLUTIONS

- When [H₃O⁺] and [OH⁻] are equal in a solution, it is neutral.
- When [H₃O⁺] is greater than [OH⁻] in a solution, it is acidic.

For example, if $[H_3O^+]$ is 1.0 x 10^{-4} M, then $[OH^-]$ would be 1.0 x 10^{-10} M.

$$\left[OH^{-} \right] = \frac{K_{w}}{\left[H_{3}O^{+} \right]} = \frac{1.0 \text{ x } 10^{-14}}{1.0 \text{ x } 10^{-4}} = 1.0 \text{ x } 10^{-10} \text{ M}$$

When [OH⁻] is greater than [H₃O⁺] in a solution, it is basic.
For example, if [OH⁻] is 1.0 x 10⁻⁶ M, then [H₃O⁺] would be 1.0 x 10⁻⁸ M.

$$\left[H_{3}O^{+}\right] = \frac{K_{w}}{\left[OH^{-}\right]} = \frac{1.0 \times 10^{-14}}{1.0 \times 10^{-6}} = 1.0 \times 10^{-8} M$$

ACIDIC & BASIC SOLUTIONS

Examples:

1. Calculate the $[OH^{-}]$ in a solution with $[H_3O^{+}] = 2.3 \times 10^{-4} \text{ M}$. Classify the solution as acid or basic.

$$\left[\mathbf{OH}^{-}\right] = \frac{\mathbf{K}_{\mathbf{w}}}{\left[\mathbf{H}_{\mathbf{3}}\mathbf{O}^{+}\right]} =$$

2. Calculate the $[H_3O^+]$ in a solution with $[OH^-] = 3.8 \times 10^{-6}$ M. Classify the solution as acid or basic.

$$\left[\mathbf{H}_{\mathbf{3}}\mathbf{O}^{+}\right] = \frac{\mathbf{K}_{\mathbf{w}}}{\left[\mathbf{O}\mathbf{H}^{-}\right]} =$$

3. Calculate the $[OH^{-}]$ in a solution with $[H_3O^{+}] = 5.8 \times 10^{-8}$ M. Classify the solution as acid or basic.

4. Calculate $[H_3O^+]$ in solution prepared by dissolving 2.8 g KOH to make 45 mL of solution.

Chemistry 51

THE pH SCALE

• The **acidity** of a solution is commonly measured on a **pH scale**.

$$\mathbf{pH} = -\log\left[\mathbf{H}_{3}\mathbf{O}^{+}\right]$$

• The **pH scale** ranges from **0-14**, where **acidic** solutions are **less than 7** and **basic** solutions are **greater than 7**.

Acidic solutions	pH < 7	$[H_3O^+] > 1.0 \ge 10^{-7}$
Neutral solutions	$\mathbf{pH} = 7$	$[H_3O^+] = 1.0 \ge 10^{-7}$
Basic solutions	pH > 7	$[H_3O^+] < 1.0 \text{ x } 10^{-7}$

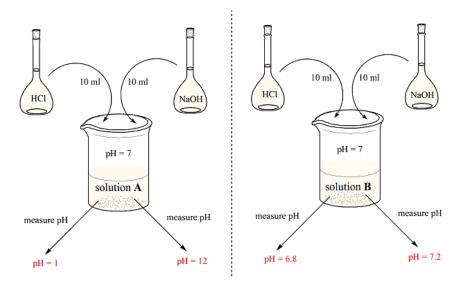
Examples:

1. The $[H_3O^+]$ of a liquid detergent is $1.4 \ge 10^{-9}$ M. Calculate its pH.

 $pH=-log [H_{3}O^{+}] = -log [1.4 \times 10^{-9}] = -(-8.85) = 8.85$

2. The pH of black coffee is 5.3. Calculate its $[H_3O^+]$.

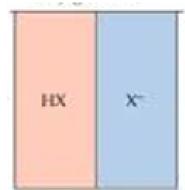
 $[H_3O^+] = antilog (-pH) = 10^{-pH} = 10^{-5.3} = 5 \times 10^{-6}$


- 3. The $[H_3O^+]$ of a solution is 3.5 x 10^{-3} M. Calculate its pH.
- 4. The pH of tomato juice is 4.1. Calculate its $[H_3O^+]$.
- 5. The $[OH^{-}]$ of a cleaning solution is 1.0×10^{-5} M. What is the pH of this solution?

$$[H_3O^+] = pH=$$

6. Calculate the pH of a 1.2×10^{-3} M KOH solution.

BUFFERS


- The pH of water and most solutions change dramatically when a small amount of acid or base are added to it. However, when a small amount of acid or base is added to a buffer, the pH does not change very much.
- A **buffer** solution **maintains the pH** of a solution by neutralizing the added acid or base. Proper physiological functioning in the human body requires a very tight balance between the concentrations of acids and bases in the blood. A variety of buffering systems permits blood and other bodily fluids to maintain a narrow pH range.

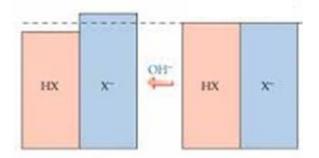
addition of acid/base to water

addition of acid/base to buffer

- A buffer solution consists of a weak acid and its conjugate base or a weak base and its conjugate acid. Both buffer systems work similarly, but we will concentrate on the former type to understand how a buffer works.
- An example of such buffer is a mixture of acetic acid (weak acid) and sodium acetate (conjugate base). In this buffer, acetic acid is represented as HX and the acetate ion is represented as X⁻. The sodium ion is the cation associated with the acetate ion and is not part of the buffer system.
- In an ideal buffer, the mixture of weak acid and conjugate base are equal in amounts, but could be slightly different from one another.

HOW BUFFERS WORK

• The acetic acid dissociates in water and produces a small amount of H_3O^+ and acetate ion, as shown below. The added sodium acetate increases the concentration of the acetate ion necessary for proper buffering capability.


$$HC_2H_3O_2$$
 (aq) + H_2O (l) \longrightarrow H_3O^+ (aq) + $C_2H_3O_2^-$ (aq)

• When a small amount of acid is added to this buffer, the acetate ion neutralizes it to produce the weak acid and water, as shown below. As a result, the concentration of the weak acid (HX) increases slightly while the concentration of the conjugate base (X⁻) decreases slightly. However, the pH of the solution changes slightly.

$$H_{3}O^{+} (aq) + C_{2}H_{3}O_{2}^{-} (aq) \longrightarrow HC_{2}H_{3}O_{2} (aq) + H_{2}O (l)$$

• When a small amount of base is added to this buffer, the acetic acid neutralizes it to produce the acetate ion and water, as shown below. As a result, the concentration of the weak acid (HX) decreases slightly while the concentration of the conjugate base (X⁻) increases slightly. However, the pH of the solution changes slightly.

$$HC_2H_3O_2$$
 (aq) + OH^- (l) $\rightleftharpoons H_2O$ (aq) + $C_2H_3O_2^-$ (aq)

CALCULATING pH OF BUFFERS

• Earlier we discussed that weak acids dissociate partially in solution as described by the equation below:

$$HC_2H_3O_2$$
 (aq) + H_2O (l) \longrightarrow H_3O^+ (aq) + $C_2H_3O_2^-$ (aq)

• The degree of dissociation of a weak acid in solution can be quantified by the **acid dissociation constant** (**K**_a) which can be written as:

$$\mathbf{K}_{a} = \frac{[\mathbf{H}_{3}\mathbf{O}^{+}] [\mathbf{C}_{2}\mathbf{H}_{3}\mathbf{O}_{2}^{-}]}{[\mathbf{H}\mathbf{C}_{2}\mathbf{H}_{3}\mathbf{O}_{2}]}$$

• The greater the dissociation constant, the more the acid ionizes and the greater the [H₃O⁺] it produces in solution. Listed below are acid dissociation constants for some common acids.

Name	Formula	Ka
acetic acid	СН3СООН	1.8 × 10 ⁻⁵
benzoic acid	C ₆ H ₅ COOH	6.4 × 10 ⁻⁵
chlorous acid	HCIO ₂	1.2 × 10 ⁻²
formic acid	НСООН	1.8 × 10 ⁻⁴
hydrocyanic acid	HCN	6.2 × 10 ⁻¹⁰
hydrofluoric acid	HF	6.3 × 10 ⁻⁴

• Rearranging the acid dissociation constant above, we can calculate the $[H_3O^+]$ as:

$$[H_{3}O^{+}] = K_{a}x \frac{[HC_{2}H_{3}O_{2}]}{[C_{2}H_{3}O_{2}^{-}]}$$

• The pH of the buffer solution can then be calculated from the $[H_3O^+]$.

CALCULATING pH OF BUFFERS

Examples:

1. The K_a for acetic acid is 1.8×10^{-5} . Calculate the pH of a buffer that is $1.0 \text{ M HC}_2\text{H}_3\text{O}_2$ and $1.0 \text{ M NaC}_2\text{H}_3\text{O}_2$.

2. One of the buffer systems in blood is $H_2PO_4^-/HPO_4^{2-}$. The K_a for $H_2PO_4^-$ is 6.2×10^{-8} . What is the pH of a buffer that is prepared from 0.10 M $H_2PO_4^-$ and 0.50 M HPO_4^{2-} .

- 3. One of the buffer systems used in blood is H_2CO_3/HCO_3^- .
 - a) Write an equation that shows how this buffer neutralizes added acid.

b) Write an equation that shows how this buffer neutralizes added base.