CHEMICAL REACTIONS

- A chemical reaction is a rearrangement of atoms in which some of the original bonds are broken and new bonds are formed to give different chemical structures.
- In a chemical reaction, atoms are neither created, nor destroyed.
- A chemical reaction, as described above, is supported by Dalton's postulates.

Products

- A chemical reaction can be detected by one of the following evidences:

1. Change of color
2. Formation of a solid
3. Formation of gas
4. Exchange of heat with surroundings

THE CHEMICAL EQUATION

- A chemical equation is a shorthand expression for a chemical reaction.

Word equation: Aluminum combines with ferric oxide to form iron and aluminum oxide.
Chemical Equation:
$\mathrm{Al}+\mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow \mathrm{Fe}+\mathrm{Al}_{2} \mathrm{O}_{3}$

- A chemical equation consists of the following information:

1. Reactants separated from products by an arrow (\rightarrow) :

$$
\underset{\text { reactants }}{\mathrm{Al}}+\underset{\mathrm{Fe}_{2} \mathrm{O}_{3}}{\longrightarrow} \mathrm{Fe}+\mathrm{Al}_{2} \mathrm{O}_{3}
$$

2. Coefficients are placed in front of substances to balance the equation:

$$
2 \mathrm{Al}+\mathrm{Fe}_{2} \mathrm{O}_{3} \longrightarrow 2 \mathrm{Fe}+\mathrm{Al}_{2} \mathrm{O}_{3}
$$

3. Reaction conditions are placed over the arrow:

$$
2 \mathrm{Al}+\mathrm{Fe}_{2} \mathrm{O}_{3} \xrightarrow{\Delta} 2 \mathrm{Fe}+\mathrm{Al}_{2} \mathrm{O}_{3}
$$

4. The physical state of the substances are indicated by symbols (s), (l), (g) and (aq):

$$
2 \mathrm{Al}(\mathrm{~s})+\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \xrightarrow{\Delta} 2 \mathrm{Fe}(\mathrm{l})+\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})
$$

WRITING \& BALANCING EQUATIONS

- A balanced equation contains the same number of atoms on each side of the equation, and therefore obeys the law of conservation of mass.
- Many equations are balanced by trial and error; but it must be remembered that coefficients can be changed in order to balance an equation, but not subscripts of a correct formula.

The general procedure for balancing equations is:

1. Write the unbalanced equation

- Make sure the formula for each substance is correct

$$
\mathrm{CH}_{4}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

2. Balance by inspection

- Count and compare each element on both sides of the equation.

$\underline{\text { Reactant }}$		Product
1 C	=	1C
4 H	\#	2H
20	\neq	30

- Balance elements that appear only in one substance first.

Balance H

Balance O
$\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

- When finally done, check for the smallest coefficients possible.

Examples:

1)

$$
\mathrm{AgNO}_{3}+\mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{Ag}_{2} \mathrm{~S}+\mathrm{HNO}_{3}
$$

	Ag	H	S	NO_{3}
Reactant				
Products				

$\ldots \mathrm{AgNO}_{3}+\ldots \mathrm{H}_{2} \mathrm{~S} \rightarrow \ldots \mathrm{Ag}_{2} \mathrm{~S}+\ldots \ldots \mathrm{HNO}_{3}$
2)
$\mathrm{Al}(\mathrm{OH})_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{H}_{2} \mathrm{O}$

	Al	H	O	SO_{4}
Reactant				
Products				

$$
\ldots \mathrm{Al}(\mathrm{OH})_{3}+\ldots \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \ldots \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\ldots \ldots \mathrm{H}_{2} \mathrm{O}
$$

3)

$\mathrm{Fe}_{3} \mathrm{O}_{4}+\mathrm{H}_{2} \rightarrow \mathrm{Fe}+\mathrm{H}_{2} \mathrm{O}$

	Fe	O	H
Reactant			
Products			

$\ldots \mathrm{Fe}_{3} \mathrm{O}_{4}+\ldots \ldots \mathrm{H}_{2} \rightarrow \ldots \ldots \mathrm{Fe}+\ldots \mathrm{H}_{2} \mathrm{O}$
4)
$\mathrm{C}_{4} \mathrm{H}_{10}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$

	C	H	O
Reactant			
Products			

$$
\ldots \mathrm{C}_{4} \mathrm{H}_{10}+\ldots \mathrm{O}_{2} \rightarrow \ldots \mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}
$$

TYPES OF CHEMICAL REACTIONS

- Chemical reactions are classified intofive types:

1. Synthesis or Combination

- Two elements or compound combine to form another compound.

2. Decomposition

- A compound breaks up to form elements or simpler compound.

3. Single Replacement

- A more reactive element replaces a less reactive element in a compound.
- These reactions will be discussed in more detail later in this chapter.

TYPES OF CHEMICAL REACTIONS

4. Double Replacement

- Two compounds interact to form two new compounds.
- These reactions will be discussed in more detail later in this chapter.

5. Combustion Reactions:

- A reaction that involves oxygen as a reactant and produces large amounts of heat is classified as a combustion reaction.

$$
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Examples:

Classify each of the reactions below:

1. $\mathrm{Mg}+\mathrm{CuCl}_{2} \rightarrow \mathrm{MgCl}_{2}+\mathrm{Cu}$
2. $\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}$
3. $2 \mathrm{HCl}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}$
4. $\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
5. $4 \mathrm{Fe}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}$ \qquad

DOUBLE REPLACEMENT REACTIONS

- Double replacement reactions can be subdivided into one of the following subgroups:

1. Precipitation:

In these reactions one of the products formed is an insoluble solid called a precipitate.
For example, when solutions of potassium chromate, $\mathrm{K}_{2} \mathrm{CrO}_{4}$, and barium nitrate, $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$, are combined an insoluble salt barium chromate, BaCrO_{4}, is formed.

$$
\mathrm{K}_{2} \mathrm{CrO}_{4}(\mathrm{aq})+\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \underset{\text { Precipitate }}{\mathrm{BaCrO}_{4}(\mathrm{~s})}+2 \mathrm{KNO}_{3}(\mathrm{aq})
$$

These reactions will be further discussed in Chapter 8
2. Neutralization:

The most important reaction of acids and bases is called neutralization. In these reactions an acid combines with a base to form a salt and water. For example:

$\mathrm{HCl}(\mathrm{aq})$			
acid	$\mathrm{NaOH}(\mathrm{aq})$	base	$\mathrm{NaCl}(\mathrm{aq})$

Salts are ionic substances with the cation donated from the base and the anion donated from the acid. In the laboratory, neutralization reactions are observed by an increase in temperature (exothermic reaction).

3. Unstable product:

Some chemical reactions produce gas because one of the products formed in the reaction is unstable. Two such products are listed below:

$$
\begin{array}{ll}
\text { Carbonic acid } & \mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
\text { Sulfurous acid } & \mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq}) \rightarrow \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
\end{array}
$$

When either of these products appears in a chemical reaction, they should be replaced with their decomposition products.

DOUBLE REPLACEMENT REACTIONS

Examples:

Complete and balance each neutralization reaction below:

1. $\mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow$
2. $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow$
3. $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{KOH}(\mathrm{aq}) \rightarrow$

Complete and balance the unstable product reaction shown below:
4. $\mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{K}_{2} \mathrm{SO}_{3}(\mathrm{aq}) \rightarrow$

OXIDATION-REDUCTION REACTIONS

- Reactions known as oxidation and reduction (redox) have many important applications in our everyday lives. Rusting of a nail or the reaction within your car batteries are two examples of redox reactions.
- In an oxidation-reduction reaction, electrons are transferred from one substance to another. If one substance loses electrons, another substance must gain electrons.

- Oxidation is defined as loss of electrons, and reduction is defined as gain of electrons. One way to remember these definitions is to use the following mnemonic:

OIL RIG

Oxidation Is Loss of electrons
Reduction Is Gain of electrons

- Combination, decomposition, single replacement and combustion reactions are all examples of redox reactions.

OXIDATION-REDUCTION REACTIONS

- In general, atoms of metals lose electrons to form cations, and are therefore oxidized, while atoms of non-metals gain electrons to form anions, and are therefore reduced.
- For example, in the formation of calcium sulfide from calcium and sulfur

$$
\begin{array}{ll}
\mathrm{Ca}+\mathrm{S} \rightarrow \mathrm{CaS} & \\
\mathrm{Ca} \rightarrow \mathrm{Ca}^{2+}+2 \mathrm{e}^{-} & \text {oxidized (loses electrons) } \\
\mathrm{S}+2 \mathrm{e}^{-} \rightarrow \mathrm{S}^{2-} & \text { reduced (gains electrons) }
\end{array}
$$

- Therefore, the formation of calcium sulfide involves two half-reactions that occur simultaneously, one an oxidation and the other a reduction.
- Similarly, in the reaction of magnesium metal with hydrochloric acid

$$
\begin{array}{ll}
\mathrm{Mg}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2} \\
\mathrm{Mg} \rightarrow \mathrm{Mg}^{2+}+2 \mathrm{e}^{-} & \text {oxidized (loses electrons) } \\
2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2} & \text { reduced (gains electrons) }
\end{array}
$$

- In every oxidation-reduction reaction, the number of electrons lost must be equal to the number of electrons gained.

Examples:

1. Identify each of the reactions below as oxidation or reduction:
a) $\mathrm{Zn} \rightarrow \mathrm{Zn}^{2+}+2 \mathrm{e}^{-}$
b) $\mathrm{Cl}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}^{-}$
c) $\mathrm{Fe}^{3+}+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}$
d) $2 \mathrm{Br}^{-} \rightarrow \mathrm{B}_{2}+2 \mathrm{e}^{-}$

OXIDATION-REDUCTION IN BIOLOGICAL SYSTEMS

- Many important biological reactions involve oxidation and reduction. In these reactions, oxidation involves addition of oxygen or loss of hydrogen, and reduction involves loss of oxygen or gain of hydrogen.
- For example, poisonous methyl alcohol is metabolized by the body by the following reaction:

$$
\underset{\text { methyl alcohol }}{\mathrm{CH}_{3} \mathrm{OH}} \underset{\text { formaldehyde }}{\mathrm{H}_{2} \mathrm{CO}}+2 \mathrm{H} \bullet \quad \text { oxidation (loss of hydrogen) }
$$

- The formaldehyde is further oxidized to formic acid and finally carbon dioxide and water by the following reactions:

$$
\underset{\text { formaldehyde }}{2 \mathrm{H}_{2} \mathrm{CO}}+\mathrm{O}_{2} \rightarrow \underset{\text { formic acid }}{2 \mathrm{H}_{2} \mathrm{CO}_{2}} \quad \text { oxidation (gain of oxygen) }
$$

$$
\begin{aligned}
& 2 \mathrm{H}_{2} \mathrm{CO}_{2} \\
& \text { formic acid }
\end{aligned}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \quad \text { oxidation (gain of oxygen) }
$$

- In many biochemical oxidation-reduction reactions, the transfer of hydrogen atoms produces energy in the cells.
- For example, cellular respiration is an oxidation-reduction process that transfers energy from the bonds in glucose to form ATP.

- The oxidation of a typical biochemical molecule can involve the transfer of hydrogen atoms to a proton acceptor such as coenzyme FAD to produce its reduced form FADH_{2}.

- In summary, the particular definition of oxidation-reduction depends on the process that occurs in the reaction. A summary of these definitions appears below:

Oxidation	
Always Involves	May Involve
Loss of electrons Electrons are a product Reduction	
Alwass of hydrogen	

Examples:

1. Linoleic acid, an unsaturated fatty acid, can be converted to a saturated fatty acid by the reaction shown below. Is linoleic acid oxidized or reduced in this reaction?
$\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{O}_{2}+2 \mathrm{H}_{2} \rightarrow \mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{2}$ linoleic acid
2. The reaction of succinic acid provides energy for the ATP synthesis and is shown below:

$$
\begin{aligned}
& \mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{4} \rightarrow \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}+2 \mathrm{H} \bullet \\
& \text { succinic acid }
\end{aligned}
$$

$$
\mathrm{FAD}+2 \mathrm{H} \bullet \rightarrow \mathrm{FADH}_{2}
$$

a) Is succinic acid oxidized or reduced?
b) Is FAD oxidized or reduced?

ENZYMES IN BIOLOGICAL SYSTEMS

- In biochemical reactions, enzymes are necessary to oxidize glucose and other foods.
- For example, oxidation of glucose involves the transfer of hydrogen atoms and electrons to an enzyme, such as NAD^{+}to produce its reduced form NADH.

- Similarly, oxidation of methanol involves transfer of 2 hydrogen atoms and 2 electrons to NAD^{+}to form the reduced form NADH.

- Molecules such as NAD ${ }^{+}$are called "electron carriers" since they carry electrons in their reduced form.
- The electron carriers collectively are called electron transport chain.
- As electrons are transported down the chain, ATP is generated.

THE MOLE CONCEPT

- Chemists find it more convenient to use mass relationships in the laboratory, while chemical reactions depend on the number of atoms present.
- In order to relate the mass and number of atoms, chemists use the SI unit mole (abbreviated mol).
- The number of particles in a mole is called Avogadro's number and is $6.02 \times 10{ }^{23}$.

1 mol of H atoms \qquad contains: $\mathbf{6 . 0 2} \times \mathbf{1 0}^{\mathbf{2 3}} \mathrm{H}$ atoms
$1 \mathbf{~ m o l}$ of H_{2} molecules \qquad contains: $\mathbf{6 . 0 2} \times 1 \mathbf{1 0}^{23} \mathrm{H}_{2}$ molecules
$2 \mathbf{x}\left(6.02 \times 10^{23}\right) \mathrm{H}$ atoms
$\mathbf{1 m o l}$ of $\mathbf{H}_{2} \mathrm{O}$ molecules....contains: $6.02 \times 10^{23} \mathrm{H}_{2} \mathrm{O}$ molecules
$2 \times\left(6.02 \times 10^{23}\right) \mathrm{H}$ atoms
$1 \times\left(6.02 \times 10^{23}\right) O$ atoms
1 mol of Na^{+}ions \qquad contains: $\mathbf{6 . 0 2} \times 1 \mathbf{1 0}^{\mathbf{2 3}} \mathrm{Na}^{+}$ions

- The atomic mass of one atom expressed in amu is numerically the same as the mass of one mole of atoms of the element expressed in grams.

Element	Mass of one atom	Mass of one mole of atoms
H	1.008 amu	1.008 grams
Mg	24.31 amu	24.31 grams
Cl	35.45 amu	35.45 grams

- Mole is a counting unit for atoms similar to other counting units used for other objects

MOLAR MASS

- The mass of one mole of a substance is called molar mass and is measured in grams.

Mass of one mole of $\mathrm{H}_{2} \mathrm{O}$

$$
\begin{aligned}
& 2 \mathrm{~mol} \mathrm{H}=2(1.008 \mathrm{~g})=2.016 \mathrm{~g} \\
& 1 \mathrm{~mol} \mathrm{O}=1(16.00 \mathrm{~g})=\frac{16.00 \mathrm{~g}}{18.02 \mathrm{~g}} \quad \text { Molar Mass }
\end{aligned}
$$

Mass of one mole of $\mathrm{Ca}(\mathrm{OH})_{2}$
$1 \mathrm{~mol} \mathrm{Ca}=1(40.08 \mathrm{~g})=40.08 \mathrm{~g}$
$2 \mathrm{~mol} \mathrm{O}=1(16.00 \mathrm{~g})=32.00 \mathrm{~g}$
$2 \mathrm{~mol} \mathrm{H}=2(1.01 \mathrm{~g})=\underline{2.02 \mathrm{~g}}$
74.10 g

Molar Mass

Examples:

Calculate the molar mass of each compound shown below:

1. Lithium carbonate $\left(\mathrm{Li}_{2} \mathrm{CO}_{3}\right)$
2. Salicylic acid $\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3}\right)$

CALCULATIONS USING THE MOLE CONCEPT

When solving problems involving mass-mole-number relationships of elements or compounds, we can use:

- The molar mass to convert between mass and moles.

Examples:

- Avogadro's number $\left(6.02 \times 10^{23}\right)$ to convert between moles and number of entities.

1. How many moles of iron are present in 25.0 g of iron?

$$
25.0 \mathrm{~g} \mathrm{Fe}\left(\frac{1 \mathrm{~mole}}{55.85 \mathrm{~g}}\right)=0.448 \mathrm{~mol} \mathrm{Fe}
$$

2. What is the mass of 5.00 mole of water?
3. How many magnesium atoms are present in 5.00 g of Mg ?

$$
5.00 \mathrm{~g} \operatorname{Mg}\left(\frac{1 \mathrm{mel}}{24.3 \mathrm{~g}}\right)\left(\frac{6.02 \times 10^{23} \text { atoms }}{1 \mathrm{mel}}\right)=1.24 \times 10^{23} \text { atoms } \mathrm{Mg}
$$

4. How many molecules of HCl are present in 25.0 g of HCl ?

MOLES OF ELEMENTS IN A FORMULA

- The subscripts in a chemical formula of a compound indicate the number of atoms of each type of element. For example, in a molecule of aspirin, $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$, there are 9 carbon atoms, 8 hydrogen atoms and 4 oxygen atoms.
- The subscript also indicates the number of moles of each element in one mole of the compound. For example, one mole of aspirin contains 9 moles of carbon atoms, 8 moles of hydrogen atoms and 4 moles of oxygen atoms.

Atoms in 1 molecule

Moles of atoms in 1 mole

Using the subscripts from the aspirin formula, one can write the following conversion factors for each of the elements in 1 mole of aspirin:
$\frac{9 \text { moles } \mathrm{C}}{1 \text { mole } \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}} \quad \frac{8 \text { moles } \mathrm{H}}{1 \text { mole } \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}} \quad \frac{4 \text { moles } \mathrm{O}}{1 \text { mole } \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}}$

Examples:

1. Determine the moles of C atoms in 1 mole of each of the following substances:
a) Acetaminophen used in Tylenol, $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2}$
b) Zinc dietary supplement, $\mathrm{Zn}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}$
2. How many carbon atoms are present in 1.50 moles of aspirin, $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$?

SUMMARY OF MASS-MOLE CALCULATIONS

STOICHIOMETRY

- Stoichiometry is the quantitative relationship between the reactants and products in a balanced chemical equation.
- A balanced chemical equation provides several important information about the reactants and products in a chemical reaction. For example:

$1 \mathrm{~N}_{2}(\mathrm{~g}) \quad+$	$3 \mathbf{H}_{2}(\mathrm{~g})$	$2 \mathrm{NH}_{3}(\mathrm{~g})$
1 molecule	3 molecules	2 molecules
100 molecules	300 molecules	200 molecules
1 million molecules	3 million molecules	2 million molecules

```
1 mole N2 + 3 moles H2 
```

This is the MOLE RATIO between REACTANTS and PRODUCTS

Examples:

1. Determine each mole ration based on the reaction shown below:

$$
2 \mathrm{C}_{4} \mathrm{H}_{10}+13 \mathrm{O}_{2} \rightarrow 8 \mathrm{CO}_{2}+10 \mathrm{H}_{2} \mathrm{O}
$$

a) $\frac{\mathrm{mol} \mathrm{O}_{2}}{\mathrm{~mol} \mathrm{CO}_{2}}=$
b) $\frac{\mathrm{mol} \mathrm{C}_{4} \mathrm{H}_{10}}{\mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}=$

STOICHIOMETRIC CALCULATIONS

Mole-Mole Calculations:

- Relates moles of reactants and products in a balanced chemical equation

Examples:

1. How many moles of nitrogen will react with 2.4 moles of hydrogen to produce ammonia as shown in the reaction below?

2. How many moles of ammonia can be produced from 32 moles of hydrogen? (Assume excess nitrogen present)
$32 \mathrm{~mol} \mathrm{H}_{2} \mathrm{x} \longrightarrow \quad \mathrm{mol} \mathrm{NH}_{3}$
3. In one experiment, 6.80 mol of ammonia are prepared. How many moles of hydrogen were used up in this experiment?

STOICHIOMETRIC CALCULATIONS

Mass-Mole Calculations:

- Relates moles and mass of reactants or products in a balanced chemical equation

Examples:

1. How many grams of ammonia can be produced from the reaction of 1.8 moles of nitrogen with excess hydrogen as shown below?

$1 \mathrm{~N}_{2}(\mathrm{~g})$
$1.8 \mathrm{~mol} \mathrm{~N}_{2} \times \frac{2 \mathrm{H}_{2}(\mathrm{~g})}{2 \mathrm{~mol} \mathrm{NH}_{3}}$
$1 \mathrm{~mol} \mathrm{~N}_{2}$

2. How many moles of hydrogen gas are required to produce 75.0 g of ammonia?

3. How many moles of ammonia can be produced from the reaction of 125 g of nitrogen as shown above?

STOICHIOMETRIC CALCULATIONS

Mass-Mass Calculations:

- Relates mass of reactants and products in a balanced chemical equation

Examples:

1. What mass of oxygen will be required to react completely with 96.1 g of propane, $\mathrm{C}_{3} \mathrm{H}_{8}$, according to the equation below?

$$
1 \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

2. What mass of carbon dioxide will be produced from the reaction of 175 g of propane, as shown above?
$175 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{8} \mathrm{x}-\mathrm{x}-\mathrm{x} \longrightarrow \quad \mathrm{g} \mathrm{CO}_{2}$

LIMITING REACTANT

- When 2 or more reactants are combined in non-stoichiometric ratios, the amount of product produced is limited by the reactant that is not in excess.
- This reactant is referred to as limiting reactant.
- When doing stoichiometric problems of this type, the limiting reactant must be determined first before proceeding with the calculations.

Analogy:

The number of sundaes possible is limited by the amount of syrup, the limiting reactant.

- When solving limiting reactant problems, assume each reactant is limiting reactant and calculate the desired quantity based on that assumption.
- Compare your answers for each assumption; the lower value is the correct assumption.

LIMITING REACTANT

Examples:

1. How many moles of $\mathrm{H}_{2} \mathrm{O}$ can be produced by reacting 4.0 mol of hydrogen and 3.0 mol of oxygen gases as shown below:

$$
2 \mathrm{H}_{2}(\mathrm{~g})+1 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Assume hydrogen is the limiting reactant:

$$
4.0 \mathrm{~mol} \mathrm{H}_{2} \mathrm{x} \longrightarrow \quad \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
$$

Assume oxygen is the limiting reactant:

$$
3.0 \mathrm{~mol} \mathrm{O}_{2} \mathrm{x}=\quad \mathrm{mol} \mathrm{H}_{2} \mathrm{O}
$$

Correct limiting reactant is \qquad and \qquad mol of $\mathrm{H}_{2} \mathrm{O}$ are produced.
2. A fuel mixture used in the early days of rocketry was a mixture of $\mathrm{N}_{2} \mathrm{H}_{4}$ and $\mathrm{N}_{2} \mathrm{O}_{4}$, as shown below. How many grams of N_{2} gas is produced when 100 g of $\mathrm{N}_{2} \mathrm{H}_{4}$ and 200 g of $\mathrm{N}_{2} \mathrm{O}_{4}$ are mixed?

$$
\begin{aligned}
& 2 \mathrm{~N}_{2} \mathrm{H}_{4}(\mathrm{l})+1 \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{l}) \longrightarrow 3 \mathrm{~N}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
& 100 \mathrm{~g}_{2} \mathrm{H}_{4} \times \frac{1 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{H}_{4}}{32.04 \mathrm{~g} \mathrm{~N}_{2} \mathrm{H}_{4}} \times \frac{3 \mathrm{~mol} \mathrm{~N}_{2}}{2 \mathrm{~mol}_{2} \mathrm{H}_{4}}=4.68 \mathrm{~mol} \mathrm{~N}_{2} \\
& 200 \mathrm{~g} \mathrm{~N}_{2} \mathrm{O}_{4} \times \frac{1 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{O}_{4}}{92.00 \mathrm{~g} \mathrm{~N}_{2} \mathrm{O}_{4}} \times \frac{3 \mathrm{~mol} \mathrm{~N}_{2}}{1 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{O}_{4}}=6.52 \mathrm{~mol} \mathrm{~N}_{2} \\
& 4.68 \mathrm{~mol} \mathrm{~N}_{2} \times \frac{28.0 \mathrm{~g} \mathrm{~N}_{2}}{1 \mathrm{~mol} \mathrm{~N}_{2}}=131 \mathrm{~g} \mathrm{~N}_{2}
\end{aligned}
$$

Notes:

1. Even though mass of $\mathrm{N}_{2} \mathrm{O}_{4}$ is greater than $\mathrm{N}_{2} \mathrm{H}_{4}$, there are fewer moles of it due to its larger molar mass.
2. Limiting reactant calculations must always be done when amount of both reactants are given.

LIMITING REACTANT

Examples:

3. How many moles of $\mathrm{Fe}_{3} \mathrm{O}_{4}$ can be produced by reacting 16.8 g of Fe with 10.0 g of $\mathrm{H}_{2} \mathrm{O}$ as shown below:

$$
3 \mathrm{Fe}(\mathrm{~s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \xrightarrow{\Delta} \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+4 \mathrm{H}_{2}(\mathrm{~g})
$$

Assume Fe is the limiting reactant:

$$
16.8 \mathrm{~g} \mathrm{Fe} \mathrm{x}-\mathrm{x} \longrightarrow \quad \mathrm{~mol} \mathrm{Fe}_{3} \mathrm{O}_{4}
$$

Assume $\mathrm{H}_{2} \mathrm{O}$ is the limiting reactant:

$$
10.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{Ox} \mathrm{x}=\mathrm{mol} \mathrm{Fe}_{3} \mathrm{O}_{4}
$$

Correct limiting reactant is \qquad and \qquad mol of $\mathrm{Fe}_{3} \mathrm{O}_{4}$ are produced.
4. How many grams of AgBr can be produced when 50.0 g of MgBr_{2} is mixed with 100.0 g of AgNO_{3}, as shown below:

$$
\mathrm{MgBr}_{2}(\mathrm{aq})+2 \mathrm{AgNO}_{3}(\mathrm{aq}) \longrightarrow 2 \mathrm{AgBr}(\mathrm{~s})+\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})
$$

PERCENT YIELD

- The amount of product calculated through stoichiometric ratios is the maximum amount of product that can be produced during the reaction, and is thus called theoretical yield.
- The actual yield of a product in a chemical reaction is the actual amount obtained from the reaction.
- The percent yield of a reaction is obtained as follows:

$$
\frac{\text { Actual yield }}{\text { Theoretical yield }} \times 100=\text { Percent yield }
$$

Example:

1. In an experiment forming ethanol, the theoretical yield is 50.5 g and the actual yield is 46.8 g . What is the percent yield for this reaction?

$$
\% \text { yield }=\frac{\text { Actual yield }}{\text { Theoretical yield }} \times 100=\frac{46.8 \mathrm{~g}}{50.5 \mathrm{~g}} \times 100=92.7 \%
$$

2. Silicon carbide can be formed from the reaction of sand $\left(\mathrm{SiO}_{2}\right)$ with carbon as shown below:

$$
\mathrm{SiO}_{2}(\mathrm{~s})+3 \mathrm{C}(\mathrm{~s}) \quad \mathrm{SiC}(\mathrm{~s})+2 \mathrm{CO}(\mathrm{~g})
$$

When 100 g of sand are processed, 51.4 of SiC is produced. What is the percent yield of SiC in this reaction?

$$
100 \mathrm{~g} \mathrm{SiO}_{2} \mathrm{x}-\mathrm{x}-=
$$

$$
\% \text { yield } \mathrm{SiC}=\frac{\text { Actual yield }}{\text { Theoretical yield }} \times 100=
$$

PERCENT YIELD

Examples:

3. In an experiment to prepare aspirin, the theoretical yield is 153.7 g and the actual yield is 124.0 g . What is the percent yield of this reaction?

$$
\text { Percent yield }=\square \times 100=
$$

4. Carbon tetrachloride $\left(\mathrm{CCl}_{4}\right)$ was prepared by reacting 100.0 g of Cl_{2} with excess carbon disulfide $\left(\mathrm{CS}_{2}\right)$, as shown below. If 65.0 g was prepared in this reaction, calculate the percent yield.

$$
\mathrm{CS}_{2}+3 \mathrm{Cl}_{2} \rightarrow \mathrm{CCl}_{4}+\mathrm{S}_{2} \mathrm{Cl}_{2}
$$

Calculate the theoretical yield:
$100.0 \mathrm{~g} \mathrm{Cl}_{2} \mathrm{x} \longrightarrow \mathrm{x} \longrightarrow=$

$$
\mathrm{g} \mathrm{CCl}_{4}
$$

Calculate percent yield:

$$
\text { Percent yield }=\square \times 100=
$$

ENERGY CHANGES IN CHEMICAL REACTIONS

- Heat is energy change that is lost or gained when a chemical reaction takes place.
- The system is the reactants and products that we are observing. The surroundings are all the things that contain and interact with the system, such as the reaction flask, the laboratory room and the air in the room.
- The direction of heat flow depends whether the products in a reaction have more or less energy than the reactants.
- For a chemical reaction to occur, the molecules of the reactants must collide with each other with the proper energy and orientation. The minimum amount of energy required for a chemical reaction to occur is called the activation energy.
- The heat of reaction is the amount of heat absorbed or released during a reaction and is designated by the symbol $\boldsymbol{\Delta H}$.

Exothermic reaction

Progress of reaction

Endothermic reaction

- When heat is released during a chemical reaction, it is said to be exothermic. For exothermic reactions, $\Delta \mathrm{H}$ is negative and is included on the right side of the equation.

$$
3 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})+22.0 \mathrm{kcal} \quad \Delta \mathrm{H}=-22.0 \mathrm{kcal}
$$

- When heat is gained during a chemical reaction, it is said to be endothermic. For endothermic reactions, $\Delta \mathrm{H}$ is positive and is included on the left side of the equation.

$$
2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+137 \mathrm{kcal} \rightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

$$
\Delta \mathrm{H}=+137 \mathrm{kcal}
$$

CALCULATING HEAT IN A REACTION

- The value of $\Delta \mathrm{H}$ in a chemical reaction refers to the heat lost or gained for the number of moles of reactants and products in a balanced chemical equation. For example, based on the chemical equation shown below:

$$
2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=+137 \mathrm{kcal}
$$

The following conversion factors can be written:

$$
\frac{137 \mathrm{kcal}}{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}} \quad \text { or } \quad \frac{137 \mathrm{kcal}}{2 \mathrm{~mol} \mathrm{H}_{2}} \quad \text { or } \quad \frac{137 \mathrm{kcal}}{1 \mathrm{~mol} \mathrm{O}_{2}}
$$

- These conversion factors can be used to calculate the amount of heat associated with a particular chemical reaction, based on given amounts of reactants and products.

Examples:

1. Given the reaction shown below, how much heat, in kJ , is released when 50.0 g of NH_{3} form?

$$
3 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}) \quad \Delta \mathrm{H}=-92.2 \mathrm{~kJ}
$$

2. How many kJ of heat are needed to react 25.0 g of HgO according to the reaction shown below:

$$
2 \mathrm{HgO}(\mathrm{~s}) \rightarrow 2 \mathrm{Hg}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=182 \mathrm{~kJ}
$$

