MEASUREMENTS / SI (METRIC) UNITS

- **Measurements** are made by scientists to determine size, length and other **properties** of matter.
- For measurements to be useful, a measurement **standard** must be used.
- A standard is an exact quantity that people agree to use for comparison.
- SI (Metric) system is the standard system of measurement used worldwide by scientists.

SI BASE UNITS:

• There are 7 base SI units. Five of these are of importance in the study of chemistry.

Quantity Measured	Metric Units	Symbol	English Units
Length	Meter	m	yd
Mass	Kilogram	kg	lb
Time	Seconds	S	S
Temperature	Kelvin	K	°F
Amount of substance	Mole	mol	mol

DERIVED UNITS:

• In addition to the **fundamental** units above, several useful **derived** units are commonly used in SI system.

Quantity Measured	Units	Symbol
Volume	Liter	L
Density	grams/cc	g/cm ³

ERROR IN MEASUREMENTS

Two kinds of numbers are used in science:

- **Counted or Defined**: exact numbers; **no uncertainty**
- **Measured**: are subject to error; have **uncertainty**

8.6<u>5</u> cm

- Every measurement has **uncertainty** because of instrument limitations and human error.
- The **last** digit is the **estimated** one.
- Significant numbers are the certain and uncertain digits.

SIGNIFICANT FIGURE RULES

Examples:

Determine the number of significant figures in each of the following measurements:

461 cm	93.500 g
1025 g	0.006 m
0.705 mL	5500 km

Rounding Off Rules

- If the rounded digit is **<5**, the digit is simply dropped.
- If the rounded digit is ≥ 5 , the digit is increased.

Examples:

	3 sig. figs	2 sig. figs.
8.4234 rounds off to	8.42	8.4
14.780 rounds off to	14.8	15
3256 rounds off to	3260 (3.26x10 ³)	3300 (3.3x10 ³)

SIGNIFICANT FIGURES AND CALCULATIONS

- The results of a calculation cannot be more precies than the least precise measurement.
- For multiplication and division, the answer must contain the same number of significant figures as there are in the measurement with the fewest significant figures.

9.2 x 6.80 x 0.3744 = 23.4225 (calculator answer)

= 23 (rounded answer)

• For addition and subtraction, the answer must have the same number of decimal places as there are in the measurement with the fewest decimal places.

83.**5** + <u>23.28</u> 106.**7**8 (calculator answer)

106.8 (rounded answer)

Examples:

1) 5.008 + 16.2 + 13.48 =

2)
$$\frac{3.15 \text{ x } 1.53}{0.78} =$$

3) 104.45 mL - 0.838 mL + 46 mL =

4)
$$\frac{4.0 \times 8.00}{16} =$$

SI PREFIXES

- The **SI** system of units is easy to use because it is based on **multiples of ten**.
- Common **prefixes** are used with the base units to indicate the multiple of ten that the unit represents.

Prefixes	Symbol	Multiplying factor	
mega-	М	1,000,000	106
kilo-	k	1000	10 ³
centi-	с	0.01	10 ⁻²
milli-	m	0.001	10 ⁻³
micro-	μ	0.000,001	10-6

SI PREFIXES

CONVERSION FACTORS

- Many problems in chemistry and related fields require a change of units.
- Any unit can be converted into another by use of the appropriate **conversion factor**.
- Any equality in units can be written in the form of a fraction called a **conversion factor**. For example:

Equality:	1 m = 100 cm	
Conversion factors:	$\frac{1 \text{ m}}{100 \text{ cm}} \text{ or } \frac{100 \text{ cm}}{1 \text{ m}}$	Metric-Metric
Equality:	1 kg = 2.20 lb	
Conversion factors:	$\frac{1 \text{ kg}}{2.20 \text{ lb}} \text{ or } \frac{2.20 \text{ lb}}{1 \text{ kg}}$	Metric-English

• Sometimes a conversion factor is given as a percentage. For example:

Percent quantity:	18% body fat by mass		
Conversion factors:	18 kg body fat or	100 kg body mass	Percentage
	100 kg body mass	18 kg body fat	

CONVERSION OF UNITS

- Problems involving conversion of units and other chemistry problems can be solved using the following step-wise method:
 - 1. Determine the intial unit given and the final unit needed.
 - 2. Plan a sequence of steps to convert the initial unit to the final unit.
 - 3. Write the conversion factor for each units change in your plan.
 - 4. Set up the problem by arranging cancelling units in the numerator and denominator of the steps involved.

 $\frac{\text{beginning unit}}{\text{beginning unit}} = \text{final unit}$ \uparrow

conversion factor

Examples:

1. How many mg are equivalent to $2.5 \ \mu g$?

Step 1:	Given 2.5 µg Need mg
Step 2:	μg Metric – Metric factor mg
Step 3:	$\frac{10^3 \ \mu g}{1 \ mg}$ or $\frac{1 \ mg}{10^3 \ \mu g}$
Step 4:	1 mg

- 2.5 μ g x $\frac{1 \text{ mg}}{10^3 \mu \text{g}} = 2.5 \text{x} 10^{-3} \text{mg}$
- 2. A doctor orders 0.50 g of Chloromyedin to be given to a patient. Chloromedin comes in 250 mg tablets. How many tablets should be given to this patient?

Step 1: Given Need

Step 2 & 3:

Step 4:

3. The order is to give a patient 250 mg Keflin. The bottle's direction is to add 9.5 mL of sterile water to the vial to yield 0.50 g/mL. How many mL should be given to the patient to fill this order?

Step 1: Given 250 mg Need mL

4. An order is given to infuse 250 mL of IV solution in 100 minutes. If the IV tubing delivers at a rate of 15 drops/mL, what should be the flow rate of the IV in drops/min?

5. The dosage for Mannitol is 2g/kg, and it is available in 30% (m/v) solution. How many mL of this solution should be given to a patient weighing 137 lb? (1 kg = 2.2 lb)

VOLUME & DENSITY

• Volume is the amount of space an object occupies. Common units are cm³ or liter (L) and milliliter (mL).

1 L = 1000 mL

1 mL=1 cm³

• **Density** is **mass per unit volume** of a material. Common units are **g/cm³** or **g/mL**.

Density= $\frac{\text{mass}}{\text{volume}}$ $d=\frac{m}{v}$

• Density is <u>directly</u> related to mass of an object, and <u>indirectly</u> related to the volume of an object.

Comparison of the *masses* of equal volumes of 3 materials with different *densities*

VOLUME & DENSITY

Examples:

1. A copper sample has a mass of 44.65 g and a volume of 5.0 cm³. What is the density of copper?

m = 44.65 g $d = \frac{m}{v} =$ v = 5.0 mL d = ???

2. A silver bar with a volume of 28.0 cm³ has a mass of 294 g. What is the density of this bar?

m = v = d =

3. If the density of gold is 19.3 g/cm³, how many grams does a 5.00 cm³ nugget weigh?

Step 1: Given Need

4. If the density of milk is 1.04 g/mL, what is the mass of 0.50 qt of milk? (1L = 1.06 qt)

5. What volume of mercury has a mass of 60.0 g if its density is 13.6 g/ml?

DENSITY & FLOATING

- Objects float in liquids when their density is lower relative to the density of the liquid.
- The density column shown below was prepared by layering liquids of various densitites.

• The greater the density of the liquid, the lower it layers itself.