REVIEW OUESTIONS TEST 3

1. Calculate the pH of a solution containing 0.100 M sodium formate (NaHCO₂)and 0.180 M formic acid (HCHO₂). (K_a formic acid = 1.8×10^{-4})

- 2. A buffer is prepared by adding 5.00 g of NH_3 and 20.0 g of NH_4Cl to enough water to form 2.50 L of solution.
 - a) Calculate the pH of this buffer.

b) Calculate the pH of the solution when 0.200 g of NaOH is added to 1.50 L of this buffer.

3. Will Mn(OH)₂ precipitate from solution if the pH of a 0.050 M solution of MnCl₂ is adjusted to 8.00? (K_{sp} of manganese hydroxide is 1.9×10^{-13})

4. Calculate the $[Cu^{2+}]$ in 1.0 L of a solution that contains 1.0×10^{-3} mole of $Cu(NO_3)_2$ and that is 0.10 M in NH₃. (K_f for $Cu(NH_3)_4^{2+} = 5.0 \times 10^{12}$)

5. Consider the titration of 25.0 mL of 0.0800 M H₂CO₃ with 0.100 M KOH. Calculate the pH of the solution after (a) addition of 10.0 mL of base, and (b) at equivalence point. $(K_a \text{ for carbonic acid} = 4.3 \times 10^{-7})$

6. A 0.229-g sample of an unknown monoprotic acid is titrated with 0.112 M NaOH. The resulting titration curve is shown below. Based on this information, determine the molar mass and the Ka of the acid.

7. Calculate the solubility of Au(OH)₃ in 1.0 M nitric acid solution. (K_{sp} = 5.5x10⁻⁴⁶) Is this value greater or less than the solubility in pure water? Explain.

8. A 0.25 mol sample of a weak acid with an unknown pKa was combined with 10.0 mL of 3.00 M KOH, and the resulting solution was diluted to 1.500 L. The measured pH of the final solution was 3.85. What is the pKa of the weak acid?

- 9. A solution consists of 0.050 M Mg^{2+} and 0.020 M Cu^{2+} .
 - (a) Which ion will precipitate first as OH⁻ is added to the solution?
 - (b) What concentration of OH⁻ is necessary to begin the precipitation of each cation? (K_{sp} for Mg(OH)₂ = 1.8x10⁻¹¹ and K_{sp} for Cu(OH)₂ = 2.2x10⁻²⁰)

10. Calculate the solubility of CuX in a solution that is 0.150 M in NaCN. $(K_{sp} \text{ for } CuX = 1.27 \times 10^{-36}; K_f \text{ for } Cu(CN)_4^{2-} = 1.0 \times 10^{25})$

ANSWERS

- 1. pH = 3.48
- 2. a) pH = 9.15 b) pH = 9.17
- 3. No precipitation occurs
- 4. $[Cu^{2+}] = 2.4 \times 10^{-12} \text{ M}$
- 5. a) pH = 6.37 b) pH = 9.50
- 6. molar mass = 82 g/mol $Ka = 1.0x 10^{-3}$
- 7. a) 5.5×10^{-4} M b) greater
- 8. pKa = 4.72
- 9. a) $Cu(OH)_2$ will precipitate first
 - b) $[OH^-] = 1.0 \times 10^{-9}$ for Cu(OH)₂ to precipitate
 - $[OH^-] = 1.9 \times 10^{-5}$ for Mg(OH)₂ to precipitate
- 10. 8.0×10^{-8} M