FINAL EXAM STUDY GUIDE

Topic	Text
CHAPTER 18	Reference
Know the 1 st Law of Thermodynamics and the relationship between internal energy, heat and work	Notes
Know the convention for the signs of heat and work	Notes
Determine the work in a chemical reaction from the pressure and change in volume	Notes
Calculate the internal energy of a system from given data	Notes
Calculate the enthalpy of a reaction from enthalpy of formation data	Notes
• Know the definition of entropy and how it affects the spontaneity of a process	18.2-18.3
• Determine the spontaneity of a process from the 2 nd Law of Thermodynamics	18.3
Calculate the change in entropy of an equilibrium from enthalpy and temperature	18.3
 Predict the sign of the entropy change in a reaction without knowing the entropies of formation 	18.3
• Calculate ΔS_{surr} , and predict the signs of ΔS_{sys} and ΔS_{univ} from data	18.4
 Use (ΔH–TΔS) as a criteria for the spontaneity of reaction 	Notes
 Know Free Energy and its relation to spontaneity of a process 	18.5
 Calculate ΔG° for a reaction from ΔH° and ΔS° 	18.5
 Evaluate the effect of ΔH, ΔS, and T on spontaneity or reactions 	18.5
 Calculate ΔS°_{rxn} from standard molar entropies (S°) 	18.6
• Calculate ΔG° for a reaction from the standard free energies of formation ($\Delta G_{\rm f}^{\circ}$)	18.8
 Calculate the non-standard change in free energy (ΔG) from ΔG° and Q values 	18.8
 Calculate the ΔG° at various temperatures other than 25°C 	Notes
Calculate temperature at which a reaction becomes spontaneous	18.9
 Calculate the equilibrium constant at various temperatures from ΔG° values 	18.9
CHAPTER 19	
 Assign oxidation numbers and determine oxidized and reduced species in a redox reaction 	Notes
 Determine oxidizing and reducing agents in a redox reaction 	Notes
Balance redox reactions in acidic or basic solutions using the half-reaction method	19.2
Know the characteristics of voltaic and electrolytic cells	Notes
Sketch a voltaic cell, assign electrodes and determine which half-reaction occurs at each	19.3
Interpret the shorthand notation for voltaic cells	19.3
• Use standard reduction potentials to determine the standard cell potential (E° _{cell})	19.4
• Know the relationship of maximum work to the cell potential (E _{cell})	Notes
 Determine the relative strength of oxidizing and reducing agents from standard reduction potentials 	Notes
• Calculate ΔG° for a cell from its standard cell potential (E°_{cell}), and vice versa	19.5
Calculate equilibrium constant (K) from cell potential, and vice versa	19.5
Calculate the cell potential under non-standard conditions using Nernst equation	19.6
 Sketch an electrolytic cell, assign electrodes and determine which half-reaction occurs at each 	19.8
Predict the products of electrolysis for a molten salt mixture	19.8