TEST 1 STUDY GUIDE

Т	ania	Text
10	opic	Reference
CHAPTER 14		
• W	rite the rate of a reaction in terms of any reactants or products	14.1
• Ca	alculate the average rate of a reaction from concentration and time data	14.1
• K	now what order of reaction is and how the rate changes based on concentration of a	14.3
re	actant	
• U	se rate law to determine the order of a reaction with respect to any reactant	14.3
• De	etermine the rate law for a reaction from given data	14.3
• U	se the integrated rate laws for 1 st and 2 nd order reactions to determine the	14.4
со	oncentration of a reactant at a given time or the rate constant	
• De	etermine the order of a reaction by graphical methods	14.4
• De	etermine the half-life of 1 st and 2 nd order reactions from given data	14.4
• Us	se half-life of a reaction to calculate the rate constant	14.4
• K	now collision theory and the factors that affect the rate of a reaction	14.5
• K	now what an activated complex is and how it is involved in the progress of a	14.5
re	action	
• De	etermine activation energy and enthalpy of a reaction from its PE diagram	14.5
• Us	se Arrhenius equation to determine the activation energy of a reaction	14.6
• De	etermine activation energy of a reaction by graphical methods	14.6
• K	now what elementary reactions are and write rate equations for them	14.7
• De	etermine the molecularity of an elementary reaction	14.7
• De	etermine the rate law for a reaction from its mechanism	14.8
• Ev	valuate proposed mechanisms for agreement with a known rate law	14.8
• K	now how a catalyst increases the rate of a reaction	14.9
CHADTED 15		
	<u>EX 15</u>	15 1
	now what chemical equilibrium is and its characteristics	15.1
• Aj	ppry storemometry to determine the equinoritum composition of reactants and	15.1
	Vite equilibrium constant expression based on chemical equations	15.2
	now equilibrium constant in terms of rate constant of forward and reverse reactions	15.2
	alculate equilibrium constant from equilibrium concentration data given	15.2
	alculate equilibrium constant for reverse or reactions with multiple equations	15.2
• Ca	accurate equilibrium constant for reverse of reactions with multiple equations	15.2
• 56	et up reaction table to determine the equilibrium composition each substance	15.2
• Ca	accurate $\mathbf{K}_{\mathbf{P}}$ values from $\mathbf{K}_{\mathbf{C}}$ and vice versa	15.2
• w	The equilibrium constant expression for neterogeneous equilibria	15.3
• Q	uantitatively interpret the equilibrium position by the magnitude of the constant	15.4
• Pr pr	redict the direction of a reaction based on given concentration of reactants and roducts	15.5
• Ca	alculate the equilibrium concentration of a substance by solving linear and adratic equations	15.6
• Us	se La Chatelier's principle to predict the effect on equilibrium when changes in	15.7-15.8
• Ki	now the effect of catalyst on equilibrium	15.9