REVIEW QUESTIONS

Chapter 18

1. Calculate the heat of reaction $\left(\Delta \mathrm{H}^{\circ}\right)$ in $\mathrm{kJ} / \mathrm{mol}$ for the reaction shown below, given the $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}$ values for each substance:

$$
\begin{aligned}
& \begin{array}{c}
\mathrm{NH}_{3}(\mathrm{~g}) \\
-46.1
\end{array} \underset{0}{3 \mathrm{~F}_{2}(\mathrm{~g}) \rightarrow} \underset{-125}{\mathrm{NF}_{3}(\mathrm{~g})}+\underset{-271}{3 \mathrm{HF}(\mathrm{~g})} \\
& \Delta \mathbf{H}^{0}=\sum \Delta \mathbf{H}_{\mathrm{f}}^{\mathrm{o}} \text { (Products) }-\sum \Delta \mathbf{H}_{\mathrm{f}}^{\mathbf{o}} \text { (Reactants) } \\
& \sum \Delta H_{f}^{0}(\text { Products })=(1 \times-125)+(3 \times-271)=-938 k J \\
& \sum \Delta H_{f}^{0}(\text { Reactants })=(1 \times-46.1)+(3 \times 0)=-46.1 \mathrm{~kJ} \\
& \Delta H^{0}=-938-(-46.1)=-892 \mathrm{~kJ}
\end{aligned}
$$

2. Given $\Delta \mathrm{H}=+290.7 \mathrm{~kJ}$ for the reaction shown below, calculate the $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}$ for $\mathrm{CO}(\mathrm{g})$.

$$
\begin{aligned}
& \begin{array}{cccccc}
& \mathrm{Cr}_{2} \mathrm{O}_{3}(\mathrm{~s}) & +3 \mathrm{CO}(\mathrm{~g}) \rightarrow & 2 \mathrm{Cr}(\mathrm{~s}) & + & 3 \mathrm{CO}_{2}(\mathrm{~g}) \\
\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}(\mathrm{kJ} / \mathrm{mol}) & -1139.7 & ? ? ? & 0 & -393.5
\end{array} \\
& \Delta \mathbf{H}^{0}=\sum \Delta \mathbf{H}_{\mathrm{f}}^{0} \text { (Products) }-\sum \Delta \mathbf{H}_{\mathrm{f}}^{0} \text { (Reactants) } \\
& +290.7=[(3 \mathrm{x}-393.5)]-\left[(1 \mathrm{x}-1139.7)+3 \Delta \mathrm{H}_{\mathrm{f}}^{0}(\mathrm{CO})\right] \\
& -3 \Delta \mathbf{H}_{\mathrm{f}}^{0}(\mathrm{CO})=+290.7+1180.5-1139.7=+331.5 \mathrm{~kJ} \\
& \Delta H_{f}^{o}(C O)=\frac{-331.5 \mathrm{~kJ}}{3}=-110.5 \mathrm{~kJ}
\end{aligned}
$$

3. The air within a piston equipped with a cylinder absorbs 565 J of heat and expands from an initial volume of 0.10 L to a final volume of 0.85 L against a pressure of 1.0 atm. What is the change in the internal energy of the air within the piston?
$\Delta \mathbf{E}=\mathbf{q}+\mathbf{w}$
$q=+565 \mathrm{~J}$
$w=-P \Delta V=(1.0 \mathrm{~atm})(0.75 \mathrm{~L})\left(\frac{101.3 \mathrm{~J}}{1 \text { Latm }}\right)=-76 \mathrm{~J} \quad($ work is done by the system $)$
$\Delta E=+565 \mathrm{~J}-76 \mathrm{~J}=489 \mathrm{~J}$
4. How much work (in J) is required to expand the volume of a pump by 2.5 L against an external pressure of 1.1 atm ?

$$
w=P \Delta V=(1.1 \mathrm{~atm})(2.5 \mathrm{~L})\left(\frac{101.3 \mathrm{~J}}{1 \mathrm{Latm}}\right)=-280 \mathrm{~J}
$$

(negative sign indicates work is done by the system)
5. Calculate the work associated with the following reaction at 1.00 atm and $25^{\circ} \mathrm{C}$. Is the work done by the system or on the system?

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

$$
\begin{aligned}
& w=P \Delta V \quad \Delta V=\text { volume changed caused by change in moles of gas } \\
& \Delta V=\frac{\Delta n R T}{P}=\frac{(3 \mathrm{~mol})(0.0821)(298 \mathrm{~K})}{1 \mathrm{~atm}} 73.4 \mathrm{~L} \\
& \mathrm{w}=(1.00 \mathrm{~atm})(73.4 \mathrm{~L})\left(\frac{101.3 \mathrm{~J}}{1 \mathrm{Latm}}\right)=7440 \mathrm{~J} \\
& \mathrm{w}=+7440 \mathrm{~J} \text { since work is done on the system due to compression }
\end{aligned}
$$

6. The enthalpy change for vaporization of methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ at $25^{\circ} \mathrm{C}$ is $38.0 \mathrm{~kJ} / \mathrm{mol}$. If the entropy of methanol vapor at $25^{\circ} \mathrm{C}$ is $255 \mathrm{~J} / \mathrm{molK}$, what is the entropy of the liquid methanol at this temperature?

$$
\begin{aligned}
& \mathrm{CH}_{3} \mathrm{OH}(\mathbf{l}) \xrightarrow{\text { vaporization }} \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g}) \quad \Delta \mathrm{H}_{\text {vap }}=\Delta \mathbf{H}_{\text {sys }}=+38.0 \mathrm{~kJ} / \mathrm{mol} \\
& \Delta \mathrm{~S}_{\text {vap }}=\frac{-\Delta \mathbf{H}_{\text {surr }}}{T}=\frac{-\left(-38.0 \times 10^{3}\right) \mathrm{J}}{298 \mathrm{~K}}=127.5 \mathrm{~J} / \mathrm{K} \\
& \Delta \mathrm{~S}_{\text {vap }}=\mathrm{S}_{\text {gas }}-\mathrm{S}_{\text {liq }}=\mathbf{1 2 7 . 5 \mathrm { J } / \mathrm { K }} \\
& \mathrm{S}_{\text {liq }}=\mathrm{S}_{\text {gas }}-\Delta \mathbf{S}_{\text {vap }}=\mathbf{2 5 5} \mathrm{J} / \mathrm{K}-(\mathbf{1 2 7 . 5} \mathrm{J} / \mathrm{K})=127 \mathrm{~J} / \mathrm{K}
\end{aligned}
$$

7. A reaction has $\Delta \mathrm{H}_{\mathrm{rxn}}=-107 \mathrm{~kJ}$ and $\Delta \mathrm{S}_{\mathrm{rxn}}=285 \mathrm{~J} / \mathrm{K}$. At what temperature is the change in entropy for the reaction equal to the change in entropy for the surroundings?

$$
\begin{aligned}
& \Delta S_{\text {surr }}=\frac{-\Delta H_{\text {sys }}}{T} \quad \Delta S_{\text {surr }}=\Delta S_{\text {sys }}=285 \mathrm{~J} / \mathrm{K} \\
& T=\frac{-\Delta H_{\text {sys }}}{\Delta S_{\text {sys }}}=\frac{-\left(-107 \times 10^{3} \mathrm{~J}\right)}{285 \mathrm{~J} / \mathrm{K}}=375 \mathrm{~K}
\end{aligned}
$$

8. Determine the entropy change $\left(\Delta S^{\circ}\right)$ in J / K for the reaction shown below, given the standard entropies for each:

$$
\begin{aligned}
& \begin{array}{ccccc}
& 2 \mathrm{SO}_{2}(\mathrm{~g})+\quad \mathrm{O}_{2}(\mathrm{~g}) & \rightarrow & 2 \mathrm{SO}_{3}(\mathrm{~g}) \\
\mathrm{S}^{\circ}(\mathrm{J} / \mathrm{K} \mathrm{~mol}) & 248.1 & 205.03 & & 256.6
\end{array} \\
& \Delta \mathbf{S}^{0}=\sum \mathbf{S}^{0} \text { (Products) }-\sum \mathbf{S}^{0}(\text { Reactants }) \\
& \sum S^{0}(\text { Products })=(2 \times 256.6)=513.2 \mathrm{~J} / \mathrm{K} \\
& \sum S^{0}(\text { Reactants })=(2 \times 248.1)+(1 \times 205.03)=701.23 \mathrm{~J} / \mathrm{K} \\
& \Delta S^{0}=513.2-701.23=-188.0 \mathrm{~J} / \mathrm{K}
\end{aligned}
$$

9. Given the following thermodynamic data, estimate the temperature $\left({ }^{\circ} \mathrm{C}\right)$ at which the reaction shown below becomes spontaneous.

$$
\mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
$$

$$
\Delta \mathrm{H}^{\circ}=+184 \mathrm{~kJ} \quad \Delta \mathrm{~S}^{\circ}=+166 \mathrm{~J} / \mathrm{K} \quad \Delta \mathrm{G}^{\circ}=+300 \mathrm{~kJ}
$$

$$
\Delta \mathbf{G}^{0}=\Delta \mathbf{H}^{0}-\mathbf{T} \Delta \mathbf{S}^{0}
$$

Reaction reaches equilibrium when $\Delta \mathbf{G}^{0}=0 \quad$ Therefore,

$$
\begin{aligned}
& T \Delta S^{0}=\Delta H^{0}=+184 \mathrm{~kJ} \\
& T=\frac{+184 \mathrm{~kJ}}{\Delta S^{0}}=\frac{+184 \mathrm{~kJ}}{+0.166 \mathrm{~kJ} / \mathrm{K}}=1108 \mathrm{~K}=835{ }^{\circ} \mathrm{C}
\end{aligned}
$$

Temperature must be greater than $835{ }^{\circ} \mathrm{C}$ for reaction to become spontaneous
10. Calculate the free energy $\left(\Delta \mathrm{G}^{\circ}\right)$ in kJ for the reaction shown below, given the $\Delta \mathrm{G}^{\circ}{ }_{f}$ values for each substance:

$$
\begin{aligned}
& \begin{array}{ccc}
4 \mathrm{NH}_{3}(\mathrm{~g}) \\
-16.48 & 5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow & 4 \mathrm{NO}(\mathrm{~g}) \\
-16 & +\underset{-228.59}{6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})}
\end{array} \\
& \Delta \mathbf{G}^{\circ}=\sum \Delta \mathbf{G}_{\mathrm{f}}^{\circ} \text { (Products) }-\sum \Delta \mathbf{G}_{\mathrm{f}}^{\circ} \text { (Reactants) } \\
& \Delta G^{\circ}=[(4 \times(86.67)+6 \times(-228.59)]-[4 \times(-16.48)+5 \times(0)] \\
& \Delta G^{\circ}=-1024.86-(-65.92)=-958.9 \mathrm{~kJ}
\end{aligned}
$$

11. Methanol can be produced by the reaction shown below, with the following thermodynamic data given at $25^{\circ} \mathrm{C}$.

	$\mathrm{CO}(\mathrm{g})+$	$2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow$	$\mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})$
$\Delta \mathrm{H}_{\mathrm{f}}(\mathrm{kJ} / \mathrm{mol})$	-110.5	0	-238.6
$\Delta \mathrm{G}_{\mathrm{f}}(\mathrm{kJ} / \mathrm{mol})$	-137.3	0	-166.2
$\mathrm{~S}^{\circ}(\mathrm{J} / \mathrm{mol} \mathrm{K})$	+197.9	$? ? ?$	+126.8

a) Calculate $\Delta \mathrm{G}^{\circ}$ and $\Delta \mathrm{H}^{\circ}$ for this reaction

$$
\begin{aligned}
& \Delta G^{\circ}=\sum \Delta G_{f}^{\circ} \text { (Products) }-\sum \Delta G_{\mathrm{f}}^{\circ} \text { (Reactants) } \\
& \Delta \mathbf{G}^{\circ}=(1 \mathbf{x}-166.2)-[(1 \mathbf{x}-137.3)+0]=-28.9 \mathrm{~kJ} \\
& \Delta H^{\circ}=\sum \Delta H_{\mathrm{f}}^{\circ}(\text { Products })-\sum \Delta H_{\mathrm{f}}^{\circ} \text { (Reactants) } \\
& \Delta H^{\circ}=(1 \times-238.6)-[(1 \mathbf{x}-110.5)+0]=-128.1 \mathrm{~kJ}
\end{aligned}
$$

b) Calculate $\Delta \mathrm{S}^{\circ}$ (in J / K) for this reaction.

$$
\begin{aligned}
& \Delta \mathbf{G}^{\circ}=\Delta \mathbf{H}^{\circ}-\mathrm{T} \Delta \mathbf{S}^{\circ} \\
& \Delta \mathbf{S}^{\circ}=\frac{\Delta \mathbf{H}^{\circ}-\Delta \mathbf{G}^{\circ}}{\mathrm{T}}=\frac{-128.1 \mathrm{~kJ}-(-28.9 \mathrm{~kJ})}{298 \mathrm{~K}}=-0.333 \mathrm{~kJ} / \mathrm{K}=-333 \mathrm{~J} / \mathrm{K}
\end{aligned}
$$

c) Calculate S° for hydrogen.

$$
\begin{aligned}
& \Delta S^{\circ}=\sum S^{\circ}(\text { Products })-\sum S^{\circ}(\text { Reactants }) \\
& \Delta S^{\circ}=(1 \times 126.8)-\left[(1 \times 197.9)+\left(2 \times S_{\mathrm{H}_{2}}^{\circ}\right)=-333 \mathrm{~J} / \mathrm{K}\right. \\
& S_{\mathrm{H}_{2}}^{\circ}=\frac{333+126.8-197.9}{2}=131 \mathrm{~J} / \mathrm{mol} \mathrm{~K}
\end{aligned}
$$

12. At $25^{\circ} \mathrm{C}$ the equilibrium constant, K_{p}, for the reaction below is 0.281 atm .

$$
\mathrm{Br}_{2}(\mathrm{l}) \rightleftarrows \mathrm{Br}_{2}(\mathrm{~g})
$$

a) What is $\Delta \mathrm{G}^{\circ}{ }_{298}$ for this reaction?

$$
\begin{aligned}
& \mathrm{K}=\mathrm{K}_{\mathrm{p}} \\
& \Delta G_{298}^{\circ}=-\mathrm{RT} \ln \mathrm{~K}_{\mathrm{p}}=-(8.314 \mathrm{~J} / \mathrm{mol} \mathrm{~K})(298 \mathrm{~K})(\ln 0.281) \\
& \Delta G_{298}^{\circ}=3.14 \times 10^{3} \mathrm{~J} / \mathrm{mol}
\end{aligned}
$$

b) If requires 193 J to vaporize 1.00 g of liquid bromine at $25^{\circ} \mathrm{C}$ and 1.00 atm . Calculate $\Delta \mathrm{H}^{\circ}$ and $\Delta \mathrm{S}^{\circ}$ at $25^{\circ} \mathrm{C}$ for this reaction.

$$
\begin{aligned}
& \Delta H^{\circ}=\frac{193 \mathrm{~J}}{1 \mathrm{~g}} \times \frac{159.8 \mathrm{~g}}{1 \mathrm{~mol}}=3.0 \underline{8} 4 \times 10^{4} \mathrm{~J} / \mathrm{mol} \\
& \Delta \mathrm{~S}^{\circ}=\frac{\Delta H^{\circ}-\Delta G^{\circ}}{T}=\frac{(30 \underline{8} 40-3140) \mathrm{J} / \mathrm{mol}}{298 \mathrm{~K}}=92.9 \mathrm{~J} / \mathrm{mol} \mathrm{~K}
\end{aligned}
$$

c) Calculate the normal boiling point of bromine. Assume $\Delta \mathrm{H}^{\circ}$ and $\Delta \mathrm{S}^{\circ}$ are not affected by temperature. (Hint: At the normal boiling point liquid and vapor are in equilibrium)

$$
\begin{gathered}
\text { At normal boiling point } \Delta G^{\circ}=0 \\
\Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ}=0 \\
T=\frac{\Delta H^{\circ}}{\Delta S^{\circ}}=\frac{30 \underline{8} 40 \mathrm{~J} / \mathrm{mol}}{92.9 \mathrm{~J} / \mathrm{mol} \mathrm{~K}}=332 \mathrm{~K}
\end{gathered}
$$

13. ClF_{3} can be prepared by the reaction shown below:

$$
\mathrm{Cl}_{2}(\mathrm{~g})+3 \mathrm{~F}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{ClF}_{3}(\mathrm{~g})
$$

For $\mathrm{ClF}_{3}, \quad \Delta \mathrm{H}^{\circ}{ }_{\mathrm{f}}=-163.2 \mathrm{~kJ} / \mathrm{mol} \quad$ and $\quad \Delta \mathrm{G}^{\circ}{ }_{\mathrm{f}}=-123.0 \mathrm{~kJ} / \mathrm{mol}$
a) Calculate the value of the equilibrium constant for this reaction at $25^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& \Delta G^{\circ}=2(-123 \mathrm{~kJ})-0=-246 \mathrm{~kJ} \\
& \Delta G^{\circ}=-\mathrm{RT} \ln \mathrm{~K} \\
& \ln \mathrm{~K}=\frac{\Delta G^{\circ}}{-\mathrm{RT}}=\frac{-246 \times 10^{3} \mathrm{~J}}{-(8.314 \mathrm{~J} / \mathrm{K})(298 \mathrm{~K})}=99.3 \\
& \mathrm{~K}=\mathrm{e}^{99.3}=1.33 \times 10^{43}
\end{aligned}
$$

b) Calculate $\Delta \mathrm{S}^{\circ}$ for this reaction at $25^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& \Delta \mathbf{G}^{\circ}=\Delta \mathbf{H}^{\circ}-\mathbf{T} \Delta \mathbf{S}^{\circ} \\
& \Delta \mathbf{H}^{\circ}=2(-163.2 \mathrm{~kJ})-0=-326.4 \mathrm{~kJ} \\
& \Delta \mathbf{S}^{\circ}=\frac{\Delta \mathbf{H}^{\circ}-\Delta \mathbf{G}^{\circ}}{\mathrm{T}}=\frac{\left(-326.4 \times 10^{3} \mathrm{~J}\right)-\left(-246 \times 10^{3} \mathrm{~J}\right)}{298 \mathrm{~K}}=-270 \mathrm{~J} / \mathrm{K}
\end{aligned}
$$

c) If ClF_{3} produced were a liquid instead of a gas, how would the $\Delta \mathrm{S}$ for the reaction be different (sign and magnitude) than calculated above? Explain.

If ClF_{3} produced was a liquid, $\Delta \mathrm{S}$ would be a larger negative number, since liquid is more ordered than gas and has less entropy.
14. Production of ammonia from nitrogen and hydrogen gases is an important industrial reaction shown below:

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

$$
\Delta \mathrm{H}^{\circ}=-92.38 \mathrm{~kJ} \quad \Delta \mathrm{~S}^{\circ}=-198.3 \mathrm{~J} / \mathrm{K}
$$

a) Calculate $\Delta \mathrm{G}^{\circ}$ for this reaction at $500^{\circ} \mathrm{C}$. Assume $\Delta \mathrm{H}^{\circ}$ and $\Delta \mathrm{S}^{\circ}$ are not temperature dependent.

$$
\begin{aligned}
& \Delta G^{\circ}=\Delta H^{\circ}-\mathrm{T} \Delta \mathbf{S}^{\circ} \\
& \Delta \mathbf{G}_{500}^{\circ}=-92.38 \mathrm{~kJ}-(773 \mathrm{~K})\left(-198.3 \times 10^{-3} \mathrm{~kJ} / \mathrm{K}\right)=60.9 \mathrm{~kJ}
\end{aligned}
$$

b) Calculate $\Delta \mathrm{G}$ at $25^{\circ} \mathrm{C}$ for this reaction if the reaction mixture consists of 1.0 atm of N_{2}, 3.0 atm of H_{2} and 1.0 atm of NH_{3}.

$$
\begin{aligned}
& \Delta G=\Delta G^{\circ}+R T \ln \mathbf{Q} \\
& \mathbf{Q}=\frac{\mathbf{P}_{\mathrm{NH}_{3}}^{2}}{\mathbf{P}_{\mathrm{N}_{2}} \mathbf{P}_{\mathrm{H}_{2}}^{3}}=\frac{(1.0)^{2}}{(1.0)(3.0)^{3}}=3.7 \times 10^{-2} \\
& \Delta \mathbf{G}_{298}^{\circ}=\Delta \mathbf{H}^{\circ}-T \Delta \mathbf{S}^{\circ}=-92.38 \mathrm{~kJ}-(298 \mathrm{~K})\left(-198.3 \times 10^{-3} \mathrm{~kJ} / \mathrm{K}\right)=-33.3 \mathrm{~kJ} \\
& \Delta \mathbf{G}=-33.3 \mathrm{~kJ}+\frac{(8.314 \mathrm{~J} / \mathrm{K})(298 \mathrm{~K})\left(\ln 3.7 \times 10^{-2}\right)}{10^{3} \mathrm{~J} / \mathrm{kJ}}=-41.5 \mathrm{~kJ}
\end{aligned}
$$

15. What are the signs of $\Delta \mathrm{H}, \Delta \mathrm{S}$ and $\Delta \mathrm{G}$ for the sublimation of dry ice (solid CO_{2}) at $25^{\circ} \mathrm{C}$?

Since sublimation of dry ice is endothermic, $\Delta \mathbf{H}=$ positive (+)
Since gas has greater entropy than solid, $\Delta \mathrm{S}=$ positive (+)
Since dry ice sublimes at $25^{\circ} \mathrm{C}$ spontaneously, $\Delta \mathrm{G}=$ negative (-)
16. Using the following data, calculate the value of $\mathrm{K}_{\text {sp }}$ for $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$, one of the least soluble of the common nitrate salts.

Species	$\Delta \mathbf{G}^{\mathbf{o}} \mathbf{f}$
$\mathrm{Ba}^{2+}(\mathrm{aq})$	$-561 \mathrm{~kJ} / \mathrm{mol}$
NO_{3}^{-}	$-109 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~s})$	$-797 \mathrm{~kJ} / \mathrm{mol}$

$$
\begin{gathered}
\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~s}) \rightleftarrows \mathrm{Ba}^{2+}(\mathrm{aq})+2 \mathrm{NO}_{3}^{-}(\mathrm{aq}) \\
\Delta \mathbf{G}^{\circ}=\sum \Delta \mathbf{G}_{\mathrm{f}}^{\circ}(\text { Products })-\sum \Delta \mathrm{G}_{\mathrm{f}}^{\circ}(\text { Reactants }) \\
\Delta \mathbf{G}^{\circ}=[(\mathbf{2 \times (- 1 0 9)}+\mathbf{1}(-561)]-[1 \times(-797)]=-779-(-797)=+\mathbf{1 8} \mathrm{kJ} \\
\Delta G^{\circ}=-\mathrm{RT} \ln \mathrm{~K} \quad \ln \mathrm{~K}=\frac{\Delta \mathbf{G}^{\circ}}{-\mathrm{RT}}=\frac{18 \times 10^{3} \mathrm{~J}}{-(8.314 \mathrm{~J} / \mathrm{K})(298 \mathrm{~K})}=-7.27 \\
\mathrm{~K}=\mathrm{e}^{-7.27}=7.0 \times 10^{-4}
\end{gathered}
$$

17. Show that hydrogen cyanide (HCN) is a gas at $25^{\circ} \mathrm{C}$ by estimating its normal boiling point from the following data:

	$\left.\Delta \mathbf{H}^{\mathbf{o}} \mathbf{(} \mathbf{(k J} / \mathbf{m o l}\right)$	$\mathbf{S}^{\boldsymbol{}}(\mathbf{J} / \mathbf{m o l K})$
$\mathbf{H C N}(\mathbf{l})$	108.9	113
$\mathbf{H C N}(\mathbf{g})$	135.1	202

The normal boiling point of HCN is the temperature at which liquid and gaseous HCN are in equilibrium:

$$
\mathbf{H C N}(\mathrm{l}) \rightleftarrows \mathbf{H C N}(\mathrm{g})
$$

$$
\begin{aligned}
& \Delta H^{\circ}=135.1-108.9=26.2 \mathrm{~kJ} \\
& \Delta S^{\circ}=202-113=89 \mathrm{~J} / \mathrm{K}
\end{aligned}
$$

At equilibrium $\quad \Delta \mathrm{C}^{\circ}=0=\Delta \mathbf{H}^{\circ}-\mathrm{T} \Delta \mathrm{S}^{\circ}$

$$
\mathrm{T}=\frac{\Delta \mathrm{H}^{0}}{\Delta \mathrm{~S}^{\circ}}=\frac{26.2 \times 10^{3} \mathrm{~J} / \mathrm{mol}}{89 \mathrm{~J} / \mathrm{mol} \mathrm{~K}}=294 \mathrm{~K}=21^{\circ} \mathrm{C}
$$

Since $21^{\circ} \mathrm{C}$ is less than $25^{\circ} \mathrm{C}, \mathrm{HCN}$ would exist as a gas at this temperature

