Chemistry 102

ANSWER KEY

REVIEW QUESTIONS Chapter 18

1. Calculate the heat of reaction (ΔH°) in kJ/mol for the reaction shown below, given the ΔH_{f}° values for each substance:

 $\begin{array}{rrrr} NH_{3}\left(g\right) & + & 3\ F_{2}\left(g\right) \rightarrow & NF_{3}\left(g\right) & + & 3\ HF\left(g\right) \\ \Delta H_{f}^{\circ} \ (kJ/mol) & -46.1 & 0 & -125 & -271 \end{array}$

- $\Delta \mathbf{H}^{\circ} = \sum \Delta \mathbf{H}_{f}^{\circ} \text{ (Products)} \sum \Delta \mathbf{H}_{f}^{\circ} \text{ (Reactants)}$ $\sum \Delta \mathbf{H}_{f}^{\circ} \text{ (Products)} = (\mathbf{1} \times -\mathbf{125}) + (\mathbf{3} \times -\mathbf{271}) = -\mathbf{938} \text{ kJ}$ $\sum \Delta \mathbf{H}_{f}^{\circ} \text{ (Reactants)} = (\mathbf{1} \times -\mathbf{46.1}) + (\mathbf{3} \times \mathbf{0}) = -\mathbf{46.1} \text{ kJ}$ $\Delta \mathbf{H}^{\circ} = -\mathbf{938} (-\mathbf{46.1}) = -\mathbf{892} \text{ kJ}$
- 2. Given ΔH = +290.7 kJ for the reaction shown below, calculate the ΔH_f° for CO (g).

 $\begin{array}{rrrr} Cr_2O_3\left(s\right) & + & 3 & CO\left(g\right) \rightarrow & 2 & Cr\left(s\right) & + & 3 & CO_2\left(g\right) \\ \Delta H_f^{\circ} \ (kJ/mol) & -1139.7 & ??? & 0 & -393.5 \end{array}$

 $\Delta H^{\circ} = \sum \Delta H_{f}^{\circ} \text{ (Products)} - \sum \Delta H_{f}^{\circ} \text{ (Reactants)}$ +290.7 = [(3 x -393.5)] - [(1 x -1139.7) + 3 \Delta H_{f}^{\overline} (CO)] -3 \Delta H_{f}^{\overline} (CO) = +290.7 +1180.5 -1139.7 = +331.5 kJ \Delta H_{f}^{\overline} (CO) = \frac{-331.5 kJ}{3} = -110.5 kJ

3. The air within a piston equipped with a cylinder absorbs 565 J of heat and expands from an initial volume of 0.10 L to a final volume of 0.85 L against a pressure of 1.0 atm. What is the change in the internal energy of the air within the piston?

$$\begin{split} &\Delta E = q + w \\ &q = +565 \ J \\ &w = -P \Delta V = (1.0 \ atm)(0.75 \ L)(\frac{101.3 \ J}{1 \ Latm}) = -76 \ J \quad (work \ is \ done \ by \ the \ system) \\ &\Delta E = +565 \ J - 76 \ J = 489 \ J \end{split}$$

4. How much work (in J) is required to expand the volume of a pump by 2.5 L against an external pressure of 1.1 atm?

w = P Δ V = (1.1 atm)(2.5 L)($\frac{101.3 \text{ J}}{1 \text{ Latm}}$) = -280 J (negative sign indicates work is done by the system)

5. Calculate the work associated with the following reaction at 1.00 atm and 25°C. Is the work done by the system or on the system?

$$2 \operatorname{H}_{2}(g) + \operatorname{O}_{2}(g) \rightarrow 2 \operatorname{H}_{2}\operatorname{O}(l)$$

$$\begin{split} w &= P \triangle V & \Delta V = \text{volume changed caused by change in moles of gas} \\ \Delta V &= \frac{\Delta n R T}{P} = \frac{(3 \text{ mol})(0.0821)(298 \text{ K})}{1 \text{ atm}} \text{ 73.4 L} \\ w &= (1.00 \text{ atm})(73.4 \text{ L})(\frac{101.3 \text{ J}}{1 \text{ Latm}}) = 7440 \text{ J} \\ w &= + 7440 \text{ J} \text{ since work is done on the system due to compression} \end{split}$$

6. The enthalpy change for vaporization of methanol (CH₃OH) at 25°C is 38.0 kJ/mol. If the entropy of methanol vapor at 25°C is 255 J/molK, what is the entropy of the liquid methanol at this temperature?

$$\begin{array}{ll} {\rm CH_{3}OH~(l)} & \xrightarrow{{\rm vaporization}} {\rm CH_{3}OH~(g)} & \Delta {\rm H_{vap}} = \Delta {\rm H_{sys}} = +38.0 \ {\rm kJ/mol} \\ {\rm \Delta S_{vap}} = \frac{-\Delta {\rm H_{surr}}}{{\rm T}} = \frac{-(-38.0 {\rm x10^3}) \ {\rm J}}{298 \ {\rm K}} = 127.5 \ {\rm J/K} \\ {\rm \Delta S_{vap}} = {\rm S_{gas}} - {\rm S_{liq}} = 127.5 \ {\rm J/K} \\ {\rm S_{liq}} = {\rm S_{gas}} - {\rm \Delta S_{vap}} = 255 \ {\rm J/K} - (127.5 \ {\rm J/K}) = 127 \ {\rm J/K} \end{array}$$

7. A reaction has $\Delta H_{rxn} = -107$ kJ and $\Delta S_{rxn} = 285$ J/K. At what temperature is the change in entropy for the reaction equal to the change in entropy for the surroundings?

$$\Delta \mathbf{S}_{surr} = \frac{-\Delta \mathbf{H}_{sys}}{\mathbf{T}} \qquad \Delta \mathbf{S}_{surr} = \Delta \mathbf{S}_{sys} = \mathbf{285} \, \mathbf{J/K}$$
$$\mathbf{T} = \frac{-\Delta \mathbf{H}_{sys}}{\Delta \mathbf{S}_{sys}} = \frac{-(-107 \times 10^3 \, \mathbf{J})}{\mathbf{285} \, \mathbf{J/K}} = \mathbf{375} \, \mathbf{K}$$

8. Determine the entropy change (ΔS°) in J/K for the reaction shown below, given the standard entropies for each:

 $2 \text{ SO}_{2}(g) + \text{O}_{2}(g) \rightarrow 2 \text{ SO}_{3}(g)$ S° (J/K mol) 248.1 205.03 256.6 $\Delta S^{\circ} = \sum S^{\circ} \text{ (Products)} - \sum S^{\circ} \text{ (Reactants)}$ $\sum S^{\circ} \text{ (Products)} = (2 \text{ x } 256.6) = 513.2 \text{ J/K}$ $\sum S^{\circ} \text{ (Reactants)} = (2 \text{ x } 248.1) + (1 \text{ x } 205.03) = 701.23 \text{ J/K}$ $\Delta S^{\circ} = 513.2 - 701.23 = -188.0 \text{ J/K}$

9. Given the following thermodynamic data, estimate the temperature (°C) at which the reaction shown below becomes spontaneous.

 $CaCO_3 (s) \rightarrow CaO (s) + CO_2 (g)$ $\Delta H^\circ = +184 \text{ kJ} \qquad \Delta S^\circ = +166 \text{ J/K} \qquad \Delta G^\circ = +300 \text{ kJ}$

 $\Delta \mathbf{G}^{\mathbf{o}} = \Delta \mathbf{H}^{\mathbf{o}} - \mathbf{T} \Delta \mathbf{S}^{\mathbf{o}}$

Reaction reaches equilibrium when $\Delta G^{\circ} = 0$ **Therefore,**

$$T \triangle S^{\circ} = \triangle H^{\circ} = +184 \text{ kJ}$$
$$T = \frac{+184 \text{ kJ}}{\triangle S^{\circ}} = \frac{+184 \text{ kJ}}{+0.166 \text{ kJ/K}} = 1108 \text{ K} = 835 \text{ °C}$$

Temperature must be greater than 835 °C for reaction to become spontaneous

10. Calculate the free energy (ΔG°) in kJ for the reaction shown below, given the ΔG°_{f} values for each substance:

$$\begin{array}{rcl} 4 & \mathrm{NH_3}\,(\mathrm{g}) &+& 5 \ \mathrm{O}_2\,(\mathrm{g}) \rightarrow & 4 \ \mathrm{NO}\,(\mathrm{g}) &+& 6 \ \mathrm{H_2O}\,(\mathrm{g}) \\ \Delta \mathrm{G^\circ}_\mathrm{f}\,\,(\mathrm{kJ/mol}) & -16.48 & 0 & 86.67 & -228.59 \\ \\ \Delta \mathrm{G^\circ} &= \sum \Delta \mathrm{G^\circ}_\mathrm{f}\,\,(\mathrm{Products}) - \sum \Delta \mathrm{G^\circ}_\mathrm{f}\,\,(\mathrm{Reactants}) \\ \\ \Delta \mathrm{G^\circ} &= \left[(4 \ \mathrm{x}\,(86.67) + 6 \ \mathrm{x}\,(-228.59) \right] - \left[4 \ \mathrm{x}\,(-16.48) + 5 \ \mathrm{x}\,(0) \right] \\ \\ \Delta \mathrm{G^\circ} &= -1024.86 - (-\,65.92) = -\,958.9 \ \mathrm{kJ} \end{array}$$

11. Methanol can be produced by the reaction shown below, with the following thermodynamic data given at 25°C.

	CO(g) +	$2 \operatorname{H}_2(g) \rightarrow$	$\rightarrow CH_3OH(l)$
ΔH°_{f} (kJ/mol)	-110.5	0	-238.6
$\Delta G^{\circ}_{f}(kJ/mol)$	-137.3	0	-166.2
S° (J/mol K)	+197.9	???	+126.8

a) Calculate ΔG° and ΔH° for this reaction

 $\Delta G^{\circ} = \sum \Delta G_{f}^{\circ} \text{ (Products)} - \sum \Delta G_{f}^{\circ} \text{ (Reactants)}$ $\Delta G^{\circ} = (1 \text{ x} - 166.2) - [(1 \text{ x} - 137.3) + 0] = -28.9 \text{ kJ}$ $\Delta H^{\circ} = \sum \Delta H_{f}^{\circ} \text{ (Products)} - \sum \Delta H_{f}^{\circ} \text{ (Reactants)}$ $\Delta H^{\circ} = (1 \text{ x} - 238.6) - [(1 \text{ x} - 110.5) + 0] = -128.1 \text{ kJ}$

b) Calculate ΔS° (in J/K) for this reaction.

$$\Delta \mathbf{G}^{\circ} = \Delta \mathbf{H}^{\circ} - \mathbf{T} \Delta \mathbf{S}^{\circ}$$
$$\Delta \mathbf{S}^{\circ} = \frac{\Delta \mathbf{H}^{\circ} - \Delta \mathbf{G}^{\circ}}{\mathbf{T}} = \frac{-128.1 \text{ kJ} - (-28.9 \text{ kJ})}{298 \text{ K}} = -0.333 \text{ kJ/K} = -333 \text{ J/K}$$

c) Calculate S° for hydrogen.

$$\Delta S^{\circ} = \sum S^{\circ} \text{ (Products)} - \sum S^{\circ} \text{ (Reactants)}$$
$$\Delta S^{\circ} = (1 \text{ x } 126.8) - [(1 \text{ x } 197.9) + (2 \text{ x } S^{\circ}_{H_2}) = -333 \text{ J/K}$$
$$S^{\circ}_{H_2} = \frac{333 + 126.8 - 197.9}{2} = 131 \text{ J/mol K}$$

12. At 25°C the equilibrium constant, K_p, for the reaction below is 0.281 atm.

$$Br_2(l) \iff Br_2(g)$$

a) What is ΔG°_{298} for this reaction?

$$\begin{split} \mathbf{K} &= \mathbf{K}_{\mathrm{p}} \\ & \Delta \mathbf{G}_{298}^{\circ} = -\mathbf{RT} \ln \mathbf{K}_{\mathrm{p}} = -(\mathbf{8.314} \text{ J/mol } \mathbf{-\!K\!\!-})(\mathbf{298} \mathbf{-\!K\!\!-})(\ln \mathbf{0.281}) \\ & \Delta \mathbf{G}_{298}^{\circ} = \mathbf{3.14} \mathbf{x10}^3 \mathbf{J/mol} \end{split}$$

b) If requires 193 J to vaporize 1.00 g of liquid bromine at 25°C and 1.00 atm. Calculate Δ H° and Δ S° at 25°C for this reaction.

$$\Delta \mathbf{H}^{\circ} = \frac{\mathbf{193 \ J}}{\mathbf{1 \ g}} \times \frac{\mathbf{159.8 \ g}}{\mathbf{1 \ mol}} = 3.0\underline{8}4 \times \mathbf{10}^{4} \ \mathbf{J/mol}$$
$$\Delta \mathbf{S}^{\circ} = \frac{\Delta \mathbf{H}^{\circ} - \Delta \mathbf{G}^{\circ}}{\mathbf{T}} = \frac{(\mathbf{30}\underline{8}4\mathbf{0} - \mathbf{3140}) \ \mathbf{J/mol}}{\mathbf{298 \ K}} = \mathbf{92.9 \ J/mol \ K}$$

c) Calculate the normal boiling point of bromine. Assume ΔH° and ΔS° are not affected by temperature. (*Hint*: At the normal boiling point liquid and vapor are in equilibrium)

At normal boiling point $\Delta G^\circ = 0$

 $\Delta \mathbf{G}^{\circ} = \Delta \mathbf{H}^{\circ} - \mathbf{T} \Delta \mathbf{S}^{\circ} = \mathbf{0}$

$$\mathbf{T} = \frac{\Delta \mathbf{H}^{\circ}}{\Delta \mathbf{S}^{\circ}} = \frac{30\underline{8}40 \text{ J/mol}}{92.9 \text{ J/mol K}} = 332 \text{ K}$$

13. ClF₃ can be prepared by the reaction shown below:

 $Cl_2(g) + 3 F_2(g) \rightarrow 2 ClF_3(g)$ For ClF₃, $\Delta H^{\circ}_{f} = -163.2 \text{ kJ/mol}$ and $\Delta G^{\circ}_{f} = -123.0 \text{ kJ/mol}$

a) Calculate the value of the equilibrium constant for this reaction at 25°C.

$$\Delta G^{\circ} = 2(-123 \text{ kJ}) - 0 = -246 \text{ kJ}$$
$$\Delta G^{\circ} = -RT \ln K$$
$$\ln K = \frac{\Delta G^{\circ}}{-RT} = \frac{-246 \times 10^3 \text{ J}}{-(8.314 \text{ J/K})(298 \text{ K})} = 99.3$$
$$K = e^{99.3} = 1.33 \times 10^{43}$$

b) Calculate ΔS° for this reaction at 25°C.

$$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$$

$$\Delta H^{\circ} = 2(-163.2 \text{ kJ}) - 0 = -326.4 \text{ kJ}$$

$$\Delta S^{\circ} = \frac{\Delta H^{\circ} - \Delta G^{\circ}}{T} = \frac{(-326.4 \text{ x} 10^3 \text{ J}) - (-246 \text{ x} 10^3 \text{ J})}{298 \text{ K}} = -270 \text{ J/K}$$

c) If ClF_3 produced were a liquid instead of a gas, how would the ΔS for the reaction be different (sign and magnitude) than calculated above? Explain.

If CIF₃ produced was a liquid, ΔS would be a larger negative number, since liquid is more ordered than gas and has less entropy.

14. Production of ammonia from nitrogen and hydrogen gases is an important industrial reaction shown below:

$$N_2(g) + 3 H_2(g) \implies 2 NH_3(g)$$

 $\Delta H^\circ = -92.38 \text{ kJ} \qquad \Delta S^\circ = -198.3 \text{ J/K}$

a) Calculate ΔG° for this reaction at 500°C. Assume ΔH° and ΔS° are not temperature dependent.

 $\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$ $\Delta G^{\circ}_{500} = -92.38 \text{ kJ} - (773 \text{ K})(-198.3 \text{x} 10^{-3} \text{ kJ/K}) = 60.9 \text{ kJ}$

b) Calculate ΔG at 25°C for this reaction if the reaction mixture consists of 1.0 atm of N₂, 3.0 atm of H₂ and 1.0 atm of NH₃.

$$\begin{split} & \Delta G = \Delta G^{\circ} + RT \ln Q \\ & Q = \frac{P_{NH_3}^2}{P_{N_2}P_{H_2}^3} = \frac{(1.0)^2}{(1.0)(3.0)^3} = 3.7 x 10^{-2} \\ & \Delta G_{298}^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ} = -92.38 \text{ kJ} - (298 \text{ K})(-198.3 x 10^{-3} \text{ kJ/K}) = -33.3 \text{ kJ} \\ & \Delta G = -33.3 \text{ kJ} + \frac{(8.314 \text{ J/K})(298 \text{ K})(\ln 3.7 x 10^{-2})}{10^3 \text{ J/kJ}} = -41.5 \text{ kJ} \end{split}$$

15. What are the signs of ΔH , ΔS and ΔG for the sublimation of dry ice (solid CO₂) at 25°C?

Since sublimation of dry ice is endothermic, $\Delta H = positive (+)$

Since gas has greater entropy than solid, $\Delta S = \text{positive}(+)$

Since dry ice sublimes at 25°C spontaneously, ΔG = negative (–)

16. Using the following data, calculate the value of K_{sp} for Ba(NO₃)₂, one of the least soluble of the common nitrate salts.

Species	ΔG°_{f}	
$\operatorname{Ba}^{2+}(\operatorname{aq})$	-561 kJ/mol	
NO_3^-	-109 kJ/mol	
$Ba(NO_3)_2(s)$	-797 kJ/mol	

Ba(NO ₃	$a_{2}(s) \iff Ba^{2+1}$	$(aq) + 2 NO_3^{-}(aq)$	
$\Delta \mathbf{G}^{\circ} = \sum \Delta \mathbf{G}_{\mathbf{f}}^{\circ}$ (Pro	oducts) - $\sum \Delta G_{f}^{\circ}$	(Reactants)	
$\Delta \mathbf{G}^{\circ} = [(2 \mathbf{x} (-109) +$	1(-561)] - [1 x (-7	97)] = -779 - (- 797) =	= + 18 kJ
$\Delta \mathbf{G}^\circ = -\mathbf{RT} \ln \mathbf{K}$	$\ln \mathbf{K} = \frac{\Delta \mathbf{G}^{\circ}}{-\mathbf{RT}} =$	$= \frac{18 \times 10^3 \text{ J}}{-(8.314 \text{ J/K})(298 \text{ K})}$	<u>-</u> = -7.27
	$K = e^{-7.27} = 7.0$	x10 ⁻⁴	

17. Show that hydrogen cyanide (HCN) is a gas at 25°C by estimating its normal boiling point from the following data:

	$\Delta H^{o}_{f} (kJ/mol)$	S° (J/molK)
HCN (l)	108.9	113
HCN (g)	135.1	202

The normal boiling point of HCN is the temperature at which liquid and gaseous HCN are in equilibrium:

 $\textbf{HCN}(l) \iff \textbf{HCN}(g)$

 $\Delta H^{\circ} = 135.1 - 108.9 = 26.2 \text{ kJ}$

$$\Delta S^{\circ} = 202 - 113 = 89 \text{ J/K}$$

At equilibrium $\Delta C^{\circ} = 0 = \Delta H^{\circ} - T\Delta S^{\circ}$

$$T = \frac{\Delta H^{\circ}}{\Delta S^{\circ}} = \frac{26.2 \times 10^{3} \text{ J/mol}}{89 \text{ J/mol K}} = 294 \text{ K} = 21 \text{ }^{\circ}\text{C}$$

Since 21°C is less than 25°C, HCN would exist as a gas at this temperature