REVIEW QUESTIONS

Chapter 15

1. A mixture of 0.10 mol of $\mathrm{NO}, 0.050 \mathrm{~mol}$ of H_{2} and 0.10 mol of $\mathrm{H}_{2} \mathrm{O}$ is placed in a 1.0-L flask and allowed to reach equilibrium as shown below:

$$
2 \mathrm{NO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

At equilibrium $[\mathrm{NO}]=0.062 \mathrm{M}$. Calculate the equilibrium constant, K_{c}, for this reaction.
2. At $700^{\circ} \mathrm{C}, \mathrm{K}_{\mathrm{c}}=20.4$ for the reaction shown below:
$\mathrm{SO}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{3}(\mathrm{~g})$
Calculate K_{c} and K_{P} for the reaction shown below:

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

3. At $100^{\circ} \mathrm{C}, \mathrm{K}_{\mathrm{c}}=0.078$ for the following reaction:

$$
\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

In an equilibrium mixture, $\left[\mathrm{SO}_{2} \mathrm{Cl}_{2}\right]=0.136 \mathrm{M}$ and $\left[\mathrm{SO}_{2}\right]=0.072 \mathrm{M}$. What is the concentration of Cl_{2} in the equilibrium mixture?
4. At $373 \mathrm{~K}, \mathrm{~K}_{\mathrm{p}}=0.416$ for the equilibrium:

$$
2 \mathrm{NOBr}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g})
$$

If the partial pressures of NOBr and NO are equal at equilibrium, what is the partial pressure of Br_{2} ?
5. A mixture of $0.100 \mathrm{~mol} \mathrm{CO}_{2}, 0.0500 \mathrm{~mol} \mathrm{H}_{2}$ and $0.100 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$ are place in a 1.00 -L flask and allowed to come to equilibrium as shown below. At equilibrium $\left[\mathrm{CO}_{2}\right]=0.0954 \mathrm{M}$.

$$
\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

a) What are the equilibrium concentrations of $\mathrm{H}_{2}, \mathrm{CO}$ and $\mathrm{H}_{2} \mathrm{O}$?
b) Calculate K_{c} and K_{p} for this reaction at $25.0^{\circ} \mathrm{C}$.
6. When 2.00 mol each of hydrogen and iodine are mixed in a $1.00-\mathrm{L}$ flask, 3.50 mol of HI is produced at equilibrium:

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g})
$$

Calculate the equilibrium constant K_{c} for this reaction.
7. The equilibrium constant for the reaction

$$
\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{3}(\mathrm{~g})+\mathrm{NO}(\mathrm{~g})
$$

has a numerical value of 3.00 at a given temperature. 1.50 mol each of SO_{2} and NO_{2} are mixed in a $1.00-\mathrm{L}$ flask and allowed to reach equilibrium. What percent of SO_{2} is converted to product?
8. The following equilibrium exists at $1000{ }^{\circ} \mathrm{C}$ with $\mathrm{K}_{\mathrm{c}}=2.00$.

$$
2 \mathrm{COF}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{CF}_{4}(\mathrm{~g})
$$

If a $5.00-\mathrm{L}$ mixture contains $0.145 \mathrm{~mol} \mathrm{COF}_{2}, 0.262 \mathrm{~mol}$ of CO_{2} and $0.074 \mathrm{~mol}^{\text {of }} \mathrm{CF}_{4}$ at $1000^{\circ} \mathrm{C}$, in which direction will the mixture proceed to reach equilibrium?
9. A $0.831-\mathrm{g}$ sample of SO_{3} is placed in a $1.00-\mathrm{L}$ flask and heated to 1100 K . The SO_{3} decomposes to SO_{2} and O_{2}, as shown below. At equilibrium, the total pressure in the container is 1.300 atm . Find the values of K_{p} and K_{c} for this reaction at 1100 K .

$$
2 \mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

10. Predict how each of the following changes affect the amount of H_{2} present in an equilibrium mixture in the reaction

$$
3 \mathrm{Fe}(\mathrm{~s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+4 \mathrm{H}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=-150 \mathrm{~kJ}
$$

a) Raising the temperature of the mixture.
b) Adding more $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$.
c) Doubling the volume of the container holding the mixture.
d) Adding a catalyst.
11. At $2000{ }^{\circ} \mathrm{C}$ the equilibrium constant for the reaction below is $\mathrm{K}_{\mathrm{c}}=2.4 \times 10^{3}$. If the initial concentration of NO is 0.500 M , what are the equilibrium concentrations of each substance?
$2 \mathrm{NO}(\mathrm{g}) \rightleftarrows \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
12. The reaction below has an equilibrium constant $\mathrm{K}_{\mathrm{c}}=6.90$. If 0.100 mol of BrCl is placed in a $500-\mathrm{mL}$ flask and allowed to come to equilibrium, what are the equilibrium concentrations of each substance?

$$
\mathrm{Br}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{BrCl}(\mathrm{~g})
$$

13. An equilibrium mixture of $\mathrm{H}_{2}, \mathrm{I}_{2}$, and HI at $458^{\circ} \mathrm{C}$ contains $2.24 \times 10^{-2} \mathrm{M} \mathrm{H}_{2}, 2.24 \times 10^{-2} \mathrm{M} \mathrm{I}_{2}$ and 0.155 M HI in a $5.00-\mathrm{L}$ flask. What are the equilibrium concentrations when equilibrium is reestablished following the addition of 0.100 mol of HI ?
