SOLUBILITY RULES FOR IONIC COMPOUNDS IN WATER | SOLUBLE IONIC COMPOUNDS | INSOLUBLE IONIC COMPOUNDS | |---|--| | All common compounds of group IA ions (Na⁺, K⁺,etc.) and ammonium ions (NH₄⁺) are soluble. All common nitrates (NO₃⁻), acetates (CH₃CO₂⁻), and most perchlorates (ClO₄⁻) are soluble. | All common metal hydroxides are insoluble, except those of Group IA and the larger members of Group 2A (beginning with Ca²⁺). All common carbonates (CO₃²⁻) and phosphates (PO₄³⁻) are insoluble, except those of Group IA and NH₄⁺. | | 3. All common chlorides (Cl ⁻), bromides (Br ⁻), and iodides (l ⁻) are soluble, except those of Ag ⁺ , Pb ²⁺ , Cu ⁺ and Hg ₂ ²⁺ . | 3. All common sulfides are insoluble, except those of Group IA, Group 2A and NH ₄ ⁺ . | | 4. All common sulfates (SO ₄ ²⁻) are soluble, except those of Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , Pb ²⁺ . | | ## **ACTIVITY SERIES OF SOME METALS** $\frac{K > Ca > Na > Mg > Al > Zn > Fe > Ni > Pb > H > Cu > Ag > Hg > Au}{\text{most reactive}}$