FINAL EXAM STUDY GUIDE

Topic	Text Reference
CHAPTER 9	J.
• Know the types of bonds and their general characteristics	9.2
• Draw Lewis structures for all main group elements	9.3
Draw Lewis structures for ionic compounds	9.4
• Use Lewis symbols to predict the formula for an ionic compound	9.4
• Know the definition of lattice energy and how it affects the energetics of formation of ionic bonds	9.4
• Construct a Born-Haber cycle for formation of crystalline solids from their elements	9.4
• Calculate the lattice energy of an ionic bond from given data	9.4
• Know factors affecting lattice energy and rank lattice energies for various formulas based on these factors	9.4
• Draw Lewis structures for covalent compounds and ions with single and multiple bonds	9.5, 9.7
• Know the concept of electronegativity (EN) and its effect on the polarity of bonds	9.6
 Rank polarity of bonds based on ΔEN 	9.6
• Classify bond types based on ΔEN	9.6
• Determine approximate value for % ionic character of a bond from ΔEN and Figure 9.10	9.6
• Know the concept of resonance and draw resonance hybrids for structures requiring them	9.8
 Assign formal charges to atoms in a structure and determine the more favored resonance structure based on formal charges 	9.8
• Know the exceptions to the octet rule	9.9
 Know the relationship of bond length, bond energy and bond order 	9.10, Notes
• Calculate the enthalpy of reaction from bond energies	9.10
CHAPTER 10	
• Use VSEPR model to assign electron-pair geometry for molecules with 2-6 electrons pairs around the central atom	10.2
• Predict and explain the effect of lone pairs on the geometry of the molecule	10.3
• Distinguish between electron pair geometry and molecular geometry for molecules with nonbonding electrons pairs	10.3
• Know the bond angles of various shapes predicted by VSEPR	10.3
 Predict the shape of larger molecules along the interior atoms 	10.4
 Distinguish between bond polarity and molecular polarity 	10.5
 Predict the polarity of molecules based on their geometry 	10.5
 Explain chemical bonding based on valence bond theory 	10.6
 Use electron configuration and valence bond theory to explain bonding in simple molecules 	10.6
• Explain the general principles in hybridization of orbitals and characterize the differences between hybrid and standard orbitals	10.7
• Identify bonding orbitals (hybridized and standard) involved in bonding of molecules	10.7
• Distinguish between sigma and pi bonds in molecules	10.7
 Predict formation of pi bonds in molecules with hybridized orbitals 	10.7
• Assign hybridization for each geometry predicted by VSEPR model	10.7

CHAPTER 11	
• Distinguish between intermolecular forces and bonding forces present in molecules	11.3
• Explain why intermolecular forces are smaller in magnitude compared to bonding forces	11.3
• Classify the four types of intermolecular force and identify which substances contain each	11.3
• Predict the effect of different type of intermolecular force on the properties of substances	11.3
• Know the definition of vapor pressure and its relationship to the boiling point and volatility of a substance.	Notes
• Rank substances according to boiling point, and other properties based on their intermolecular forces.	11.3
• Explain why different molecules contain different intermolecular forces.	11.3
CHAPTER 13	
• Know concentration units of molarity, molality, mass percent and mole fraction.	13.5
• Convert between mass %, molarity, molality and mole fraction.	13.5
• Know colligative properties and factors they depend on.	13.6
• Calculate boiling point elevation and freezing point depression of a solvent by addition of solute.	13.6
• Use Raoult's law to determine the vapor pressure of a solution containing a nonelectrolytes and nonvolatile solute.	13.6
• Use Raoult's law to determine the vapor pressure of a solution containing 2 volatile components.	12.6
• Use Law of partial pressures to determine the pressure and composition of vapor over an ideal solution.	13.6
• Differentiate between effects of nonelectrolyte and electrolyte solutes on properties of solutions.	13.7
• Calculate vapor pressure lowering, b.p. elevation and f.p. depression of a solution containing a strong electrolyte.	13.7
• Calculate van't Hoff factor for solutions containing strong electrolytes from given data.	13.7

SUMMARY OF EQUATIONS

The equations listed below will be provided for your use on the test.

$$\Delta T_{\rm f} = i \, \mathrm{m} \, \mathrm{K}_{\rm f} \qquad \qquad \Delta T_{\rm b} = i \, \mathrm{m} \, \mathrm{K}_{\rm b}$$

$$P_{solution} = X_{solvent} P^{\circ}_{solvent} \Delta P = X_{solute} P^{\circ}_{solvent}$$

$$P_A = X_A P^{\circ}_A \qquad P_B = X_B P^{\circ}_B \qquad P_{tot} = P_A + P_B$$