TEST 2 STUDY GUIDE | Tonia | Text | |---|-----------| | Topic | Reference | | CHAPTER 4 | | | Calculate molar quantities of reactants and products in a balanced chemical equation | 4.2 | | Calculate mass of a substance from mass of another in a chemical reaction | 4.2 | | Determine the limiting reactant from given mass of reactants in a chemical reaction | 4.3 | | Calculate the theoretical and percent yield in a chemical reaction | 4.3 | | Know the general characteristics of solutions | 4.4 | | Determine the concentration of solutions as molarity | 4.4 | | Use molarity as conversion factor to solve for amount or volume of solution | 4.4 | | Convert between molarity and mass percent of solutions | Notes | | Solve dilution problems | 4.4 | | Solve stoichiometry problems involving solutions | 4.4 | | Explain why some solutes dissolve others do not based on solute & solvent attractions | 4.5 | | Know the difference between strong, weak and non-electrolytes. | 4.5 | | Use solubility rules in Table 4.1 to predict formation of precipitates. | 4.5 | | Predict whether a precipitation reaction occurs or not and write molecular equation | 4.6 | | Write complete and net ionic equations from molecular equations | 4.7 | | Know the Arrhenius definition of acids and bases | 4.8 | | Identify strong and weak acids and bases listed in Table 4.2 | 4.8 | | Write molecular and net ionic equations for neutralization reactions. | 4.8 | | Solve acid-base titration problems using solution stoichiometry | 4.8 | | Write molecular and net ionic equations for reactions with unstable products. | 4.8 | | Know the general characteristics of oxidation-reduction (redox) reactions | 4.9 | | Assign oxidation numbers for elements in a compound. | 4.9 | | Identify redox reactions from non-redox reactions | 4.9 | | Determine oxidizing and reducing agents in a redox reaction. | 4.9 | | Balance redox reactions using oxidation number method | Notes | | CHAPTER 5 | | | Know the concept of gas pressure and its units of measurement. | 5.2 | | Determine pressure of gas a barometer and open and closed end manometers. | 5.2 | | • Use Boyle's, Charles's, and Avogadro's Laws to solve problems involving gases | 5.3 | | • Use Ideal Gas Law to determine the volume, pressure, temperature or amount of gas | F 1 | | based on given data. | 5.4 | | Determine gas density and molar mass of a gas using the Ideal Gas Law. | 5.5 | | Use Dalton's law of partial pressure and mole fraction to calculate partial pressure of
gases in a mixture | 5.6 | | Determine pressure of a gas collected over water | 5.6 | | Use ideal gas law and molar volume of gases to solve stoichiometry problems with | | | gases | 5.7 | | Know the postulates of the Kinetic Molecular Theory and how they are related to the
simple gas laws and concept of pressure | 5.8 | | Know the relationship of the molecular speed of a gas to its size and temperature. | 5.8 | | Distinguish between diffusion and effusion, and use Graham's Law to calculate the
rates of different gases. | 5.9 | | Topic | Text
Reference | |--|-------------------| | CHAPTER 5 (cont'd) | | | Identify conditions under which real gases deviate from ideal behavior | 5.10 | | Identify the factors that cause the deviations from ideal behavior | 5.10 | | Identify the correction factors in Van der Waal's equation for non-ideal behavior of
gases | 5.10 |