TEST 3 STUDY GUIDE

Topic	Text Ref.
CHAPTER 6	
• Understand the concept of energy and its units of measurement.	6.2
• Know the definition of internal energy and its relationship to heat and work	6.3
• Determine change in internal energy (ΔE) based on heat flow between system and	6.3
surroundings	6.0
• Assign proper sign for heat, work and ΔE based on information provided	6.3
• Calculate ΔE from values of heat and work given	6.3
• Calculate heat absorbed or released by a system from mass, specific heat and ΔT	6.4
• Distinguish between heat capacity, molar heat capacity and specific heat and their relationship to amount of heat.	6.4
 Solve problems involving heat transfer between two objects or substances 	6.4
Calculate pressure-volume work from given data	6.4
• Know the characteristics of a bomb calorimeter	6.5
• Calculate ΔE for experiments using bomb calorimeter	6.5
• Differentiate between enthalpy (Δ H) and Δ E	6.6
• Use thermochemical equations to calculate the amount of heat in a reaction.	6.6
 Calculate ΔH for experiments using coffee-cup calorimeter 	6.7
• Use Hess's Law to calculate heat of reaction for a reaction composed of several steps.	6.8
Calculate enthalpy of reaction from standard enthalpies of formation.	6.9
<u>CHAPTER 7</u>	
• Know the wave nature of light and what its wavelength and amplitude represent	7.2
• Know the relationship between frequency and wavelength of a wave and calculate one	7.2
based on the other	
• Rank radiation in the electromagnetic spectrum (Fig. 7.5) based on frequency, wavelength or energy	7.2
• Know what wave interference is and distinguish between constructive and destructive	
• Know what wave interference is and distinguish between constructive and destructive interference	7.2
• Know what diffraction of waves is caused by and how it appears in two slits.	7.2
• Understand the quantized nature of light (photons) and calculate its energy from	7.0
wavelength or frequency	1.2
• Describe photoelectric effect and explain how Einstein's photon theory explains it	7.2
• Determine if photoelectrons are produced given threshold frequency and wavelength of light	7.2
 Distinguish between atomic emission spectrum and white light spectrum 	73
 Use Bohr's model to explain how atomic emission spectrum is produced 	7.3
 Use Rydberg's equation to calculate the wavelength of light given by transition of 	
electrons between energy levels	7.3
• Describe observations that led to proposal by de Broglie that matter has wave properties	7.4
Calculate de Broglie wavelength for objects from given data	7.4
• Explain how Heisenberg uncertainty principle affects the determination of position and velocity of electrons	7.4
 Identify contribution of each scientist to the development of the quantum theory 	Notes
• Know what electron orbitals are, and the 3 quantum numbers describing them	7.5
 Know what each quantum number represents and their allowed values 	7.5
• Assign proper quantum numbers for each orbital in the first 6 energy levels	7.5
	1.5

Tonic	Text
Tohic	Reference
CHAPTER 8	
• Know the values of the electron spin quantum number and the Pauli exclusion principle	8.3
• Assign the four quantum numbers for an electron in an atom	8.3
• Use concept of shielding to determine effective nuclear charge for atoms	8.3
• Use the Aufbau principle to write electron configuration for any atom in the first 3 periods	8.3
• Use Hund's rule to write orbital diagrams for valence electrons in the p, d, and f orbitals	8.3
• Use the periodic table to rank energy of various orbitals in an atom	8.4
• Write condensed electron configurations for any atom in the periodic table.	8.4
• Know the exceptions in electron configuration of the transition elements	Notes
• Predict and explain the trends for the atomic radii of all atoms	8.6
• Determine the paramagnetic and diamagnetic properties of atoms based on their orbital diagrams and number of unpaired electrons	8.7
• Predict and explain the trends in the ionic radii of cations and anions	8.7
• Predict and explain the trends for the ionization energy of atoms (including the exceptions)	8.7
• Define electron affinity for an atom and know its general trends and exceptions	8.8
• Predict and explain the trends for the metallic character of atoms	8.8
• Relate the metallic character of an element to its properties	Notes

SUMMARY OF EQUATIONS

The equations listed below will be provided for your use on the test.

$$h = 6.626 \times 10^{-34} \text{ Js}$$
 $c = 3.00 \times 10^8 \text{ m/s}$

$$\Delta E = q + w \qquad \qquad w = P \Delta V$$

 $q = m \ x \ C_s \ x \ \Delta T \qquad \qquad q_{cal} = C_{cal} \ x \ \Delta T$

$$\nu = \frac{c}{\lambda} \qquad \qquad \Delta E = h \nu$$

$$E = \frac{hc}{\lambda} \qquad \qquad \frac{1}{\lambda} = R \; (\frac{1}{m^2} - \frac{1}{n^2}) \qquad \text{ where } R = 1.097 \times 10^7 \; \text{m}^{-1}$$

$$\lambda = \frac{h}{mv} \qquad \qquad E = \alpha \frac{q_1 q_2}{r}$$