TEST 1 STUDY GUIDE

Topic		Text Reference	
CHAPTER 3			
	two types of bonds: ionic and covalent	3.2	
	and covalent bonds are formed	3.2	
	ween empirical, molecular and structural formulas	3.3	
	ostances based on their atomic-level view	3.4	
• -	formulas for binary ionic compounds	3.5	
	Name and write formulas for ionic compounds formed from elements with multiple		
ionic charges	tormalas for folice compounds formed from elements with maniple	3.5	
-	formulas for polyatomic ionic compounds	3.5	
	formulas for hydrated crystals	3.5	
	formulas for binary molecular compounds	3.6	
	la for binary and polyatomic acids	3.6	
	a mass and molar mass of a compound	3.8	
	nass, moles and number of particles	3.8	
_	ercent composition of elements in a compound	3.9	
	f element in a compound using mass percent or chemical formula	3.9	
	ical formula from percent composition	3.10	
	ular formula from % composition and molar mass	3.10	
	ical formula from combustion analysis data	3.10	
-	hemical reactions from word equations	3.11	
CHAPTER 4			
	quantities of reactants and products in a balanced chemical equation	4.2	
	f a substance from mass of another in a chemical reaction	4.2	
	niting reactant from given mass of reactants in a chemical reaction	4.3	
	oretical and percent yield in a chemical reaction	4.3	
	l characteristics of solutions	4.4	
÷	incentration of solutions as molarity	4.4	
	conversion factor to solve for amount or volume of solution	4.4	
	molarity and mass percent of solutions	Notes	
 Solve dilution press 		4.4	
-	etry problems involving solutions	4.4	
	ne solutes dissolve others do not based on solute & solvent attractions	4.5	
	nce between strong, weak and non-electrolytes.	4.5	
	les in Table 4.1 to predict formation of precipitates.	4.5	
÷	a precipitation reaction occurs or not and write molecular equation	4.6	
	and net ionic equations from molecular equations	4.7	
-	nus definition of acids and bases	4.8	
	nd weak acids and bases listed in Table 4.2	4.8	
• •	and net ionic equations for neutralization reactions	4.8	
	itration problems using solution stoichiometry	4.8	
	and net ionic equations for reactions with unstable products	4.8	
	l characteristics of oxidation-reduction (redox) reactions	4.9	
-	numbers for elements in a compound	4.9	
÷	actions from non-redox reactions	4.9	
-	zing and reducing agents in a redox reaction	4.9	
	actions using half-reaction method	Notes	

Topic		
CHAPTER 5		
• Know the concept of gas pressure and its units of measurement	5.2	
• Determine pressure of gas a barometer and open and closed end manometers	5.2	
• Use Boyle's, Charles's, and Avogadro's Laws to solve problems involving gases	5.3	
• Use Ideal Gas Law to determine the volume, pressure, temperature or amount of gas based on given data	5.4	
• Determine gas density and molar mass of a gas using the Ideal Gas Law	5.5	
• Use Dalton's law of partial pressure and mole fraction to calculate partial pressure of gases in a mixture	5.6	
• Determine pressure of a gas collected over water	5.6	
• Use ideal gas law and molar volume of gases to solve stoichiometry problems with gases	5.7	
• Know the postulates of the Kinetic Molecular Theory and how they are related to the simple gas laws and concept of pressure	5.8	
• Know the relationship of the molecular speed of a gas to its size and temperature.	5.8	
• Distinguish between diffusion and effusion, and use Graham's Law to calculate the rates of different gases.	5.9	
• Identify conditions under which real gases deviate from ideal behavior	5.10	
• Identify the factors that cause the deviations from ideal behavior	5.10	
• Identify the correction factors in Van der Waal's equation for non-ideal behavior of gases	5.10	

SUMMARY OF EQUATIONS

The equations listed below will be provided for your use on the test.

$$\mathbf{d} = \frac{\mathbf{P}M}{\mathbf{R}T} \qquad \mathbf{P}_{n} = \mathbf{X}_{n} \mathbf{P}_{total} \qquad \mathbf{P}_{tot} = \mathbf{P}_{1} + \mathbf{P}_{2} + \mathbf{P}_{3}...$$

$$u_{\rm rms} = \sqrt{\frac{3RT}{M}}$$

$$\frac{\text{rate A}}{\text{rate B}} = \sqrt{\frac{M_{\text{B}}}{M_{\text{A}}}}$$

R = 0.0821 Latm/molK or 8.2

or 8.314 J/molK