REVIEW QUESTIONS
Chapter 9

1. Draw Lewis structures for each of the following structures and assign formal charges to each atom:
 a) \(\text{SF}_2 \)

 \[
 \begin{array}{c}
 \text{F} \equiv \text{S} \equiv \text{F} \\
 \end{array}
 \]

 \text{20 electrons} \\

 \begin{array}{c}
 0 & 0 & 0 \\
 \end{array}

 b) \(\text{NH}_2\text{OH} \) (N and O are bonded to one another)

 \[
 \begin{array}{c}
 \text{O} \equiv \text{N} \equiv \text{H} \\
 \end{array}
 \]

 \text{14 electrons} \\

 \begin{array}{c}
 0 & 0 & 0 \\
 \end{array}

 c) \(\text{PO}_4^{3-} \)

 \[
 \begin{array}{c}
 \text{P} \equiv \text{O} \equiv \text{O} \equiv \text{O} \\
 \end{array}
 \]

 \text{32 electrons} \\

 \begin{array}{c}
 -1 & -1 & -1 & -1 \\
 0 & 0 & 0 & 0 \\
 \end{array}

 d) \(\text{I}_3^- \)

 \[
 \begin{array}{c}
 \text{I} \equiv \text{I} \equiv \text{I} \\
 \end{array}
 \]

 \text{22 electrons} \\

 \begin{array}{c}
 -1 & 0 & 0 \\
 \end{array}

2. Draw two possible resonance structures for the isocyanate ion (NCO\(^-\)) and using formal charges determine which structure has greater contribution to the resonance hybrid.

 \[
 \begin{array}{c}
 \text{N} \equiv \text{C} \equiv \text{O} \\
 \end{array}
 \]

 \text{16 electrons} \\

 \begin{array}{c}
 -1 & 0 & 0 \\
 \end{array}

 \text{(A)} \quad \text{\Longrightarrow} \quad \text{(B)}

 \[
 \begin{array}{c}
 \text{N} \equiv \text{C} \equiv \text{O} \\
 \end{array}
 \]

 \text{16 electrons} \\

 \begin{array}{c}
 0 & 0 & -1 \\
 \end{array}

Both structures possess the same magnitude of formal charges. However, structure B has greater contribution to the resonance hybrid since the negative charge is carried by oxygen which is more electronegative than nitrogen.
3. Arrange the bonds in each of the following sets in order of increasing polarity:

a) C—S B—F N—O C—S < N—O < B—F
 \[\Delta EN = 0.03 \quad 1.94 \quad 0.40 \]

b) O—Cl S—Br C—P O—Cl < C—P < S—Br
 \[\Delta EN = 0.28 \quad 0.38 \quad 0.36 \]

4. Classify each of the following bonds as ionic, polar covalent or non-polar covalent:

a) B—Cl polar covalent \[\Delta EN = 1.12 \]

b) Mg—Br polar covalent \[\Delta EN = 1.65 \]

c) Cl—Cl non-polar covalent \[\Delta EN = 0 \]

d) Na—Br ionic \[\Delta EN = 2.03 \]

5. Use bond energies listed in Table 9.5 in your textbook to find \(\Delta H \) for the reactions shown below:

a) \[\begin{align*} \text{Bond Breaking (BB)} & \quad \text{Bond Forming (BF)} \\ C=\overset{\text{H}}{\text{C}} & 1 \times 602 = 602 \text{ kJ} \quad C-\overset{\text{H}}{\text{C}} \\ \overset{\text{H}}{\text{O}}-\overset{\text{O}}{\text{O}} & 1 \times 142 = 142 \text{ kJ} \quad C-\overset{\text{H}}{\text{O}} \\ \end{align*} \]
 \[\Delta H = \Sigma \text{BB} - \Sigma \text{BF} = (602+142) - (346+716) = -318 \text{ kJ} \]

b) \[\begin{align*} \text{Bond Breaking (BB)} & \quad \text{Bond Forming (BF)} \\ \overset{\text{H}}{\text{C}}=\overset{\text{N}}{\text{N}} & 1 \times 615 = 615 \text{ kJ} \quad C=\overset{\text{O}}{\text{O}} \\ \overset{\text{H}}{\text{O}}-\overset{\text{O}}{\text{H}} & 2 \times 459 = 918 \text{ kJ} \quad C=\overset{\text{O}}{\text{O}} \\ \end{align*} \]
 \[\Delta H = \Sigma \text{BB} - \Sigma \text{BF} = (615+918) - (745+772) = +16 \text{ kJ} \]
6. Use the data provided below to calculate the lattice energy of RbCl. Is this value greater or less than the lattice energy of NaCl? Explain.

Electron affinity of Cl = –349 kJ/mol
1st ionization energy of Rb = 403 kJ/mol
Bond energy of Cl\textsubscript{2} = 242 kJ/mol
Sublimation energy of Rb= 86.5 kJ/mol
\(\Delta H_f [\text{RbCl (s)}] = -430.5\) kJ/mol

\[
\text{Rb (s) + } \frac{1}{2} \text{Cl}_2 (g) \rightarrow \text{RbCl (s)}
\]

This equation can be written as the sum of the following:

\[
\begin{align*}
\text{Rb (s) } & \rightarrow \text{Rb (g)} \quad \text{sublimation} \quad \Delta H_1 = +86.5\text{ kJ/mol} \\
\text{Rb (g) } & \rightarrow \text{Rb}^+ + e^- \quad 1\text{st ionization energy} \quad \Delta H_2 = +403\text{ kJ/mol} \\
\frac{1}{2} \text{Cl}_2 (g) & \rightarrow \text{Cl} \quad \text{bond energy of Cl}_2 \quad \Delta H_3 = +121\text{ kJ/mol} \\
\text{Cl} + e^- & \rightarrow \text{Cl}^- \quad \text{electron affinity of Cl} \quad \Delta H_4 = -349\text{ kJ/mol} \\
\text{Rb}^+ + \text{Cl}^- & \rightarrow \text{RbCl} \quad \text{lattice energy} \quad \Delta H_5 = ???
\end{align*}
\]

\[
\Delta H_f = \Delta H_1 + \Delta H_2 + \Delta H_3 + \Delta H_4 + \Delta H_5
\]

\[
\begin{align*}
\text{Lattice energy} & = \Delta H_5 = \Delta H_f - (\Delta H_1 + \Delta H_2 + \Delta H_3 + \Delta H_4) \\
& = -430.5 - (86.5 + 403 + 121 - 349) \\
& = -692 \text{ kJ}
\end{align*}
\]

This value would be expected to be smaller than NaCl. This is because Rb is a larger ion than Na and would be further apart from the anion. Lattice energy is inversely proportional to the distance between the ions.

7. Arrange the following compounds in order of increasing lattice energy:

NaF \quad CaO \quad CsI

CsI \text{ < NaF < CaO}

Calcium has a +2 ion and oxygen has –2 ion, while both NaF and CsI possess +1 and –1 charges. Since lattice energy is directly proportional to the charges, CaO would have the largest value.

Sodium ion and fluoride ions are smaller than cesium and iodide ions. Since lattice energy is inversely proportional to the size of the ions, CsI would have the lowest value.
8. Oxalic acid (\(\text{H}_2\text{C}_2\text{O}_4\)) is a weak acid that can lose two hydrogens to form the following anions:

\[
\text{HC}_2\text{O}_4^- \quad \text{and} \quad \text{C}_2\text{O}_4^{2-}
\]

Draw Lewis structures for the two anions above, and comment on the relative strength and length of their C–O bonds.

\[
\text{HC}_2\text{O}_4^-
\]

\[
\text{C}_2\text{O}_4^{2-}
\]

In \(\text{HC}_2\text{O}_4^-\), since the resonance structures are not equivalent, the C–O bonds are of different length (C=O bond shorter than C–O bond) and different strengths (C=O bond stronger than C–O bond).

In \(\text{C}_2\text{O}_4^{2-}\), since the resonance structures are equivalent, all C–O bonds are of the same length and strength, and have values intermediate to those in \(\text{HC}_2\text{O}_4^-\).

9. Bond energies can be combined with values for other atomic properties to obtain \(\Delta H\) values that cannot be measured directly. Use bond energy and other data found in your textbook to calculate \(\Delta H^\circ_{\text{rxn}}\) for the ionic dissociation of chlorine gas:

\[
\text{Cl}_2 (g) \rightarrow \text{Cl}^+ (g) + \text{Cl}^- (g)
\]

- **Bond dissociation**: \(\text{Cl}_2 (g) \rightarrow 2 \text{Cl} (g)\) \(\Delta H = +243 \text{ kJ}\)
- **1st ionization energy**: \(\text{Cl} (g) \rightarrow \text{Cl}^+ (g) + e^-\) \(\Delta H = +1251 \text{ kJ}\)
- **Electron affinity**: \(\text{Cl} (g) + e^- \rightarrow \text{Cl}^- (g)\) \(\Delta H = -349 \text{ kJ}\)

\[
\text{Cl}_2 (g) \rightarrow \text{Cl}^+ (g) + \text{Cl}^- (g) \quad \Delta H = +1145 \text{ kJ}
\]

10. Tetrazene (\(\text{N}_4\text{H}_4\)) is a thermally unstable nitrogen hydride with the atom sequence shown below. It decomposes above 0°C to form hydrazine (\(\text{N}_2\text{H}_4\)) and nitrogen gas. Draw a Lewis structure for tetrazene and calculate the \(\Delta H^\circ_{\text{rxn}}\) for its decomposition.

\[
\text{H}_2\text{NNNNH}_2
\]

- **Bond Breaking (BB)**
 - 1 N–N \(163 \text{ kJ}\)
 - 1 N=N \(418 \text{ kJ}\)

- **Bond Forming (BF)**
 - 1 N≡N \(946 \text{ kJ}\)

\[
\Delta H = \sum \text{BB} - \sum \text{BF} = 581 - 946 = -365 \text{ kJ}
\]
11. Thionyl chloride (SOCl₂) can have the 3 skeletal structures shown below. Complete the Lewis structure for each, assign formal charges and determine which structure is the most plausible for this compound.

Most plausible structure (lowest formal charges)
Not acceptable FC’s (S has negative FC)
Not acceptable FC’s (very large values)

12. Rank the length of the N–O bond length in the following ions:

Bond order: 3 1.5 (3/2) 1.33 (4/3)
Bond length: shortest intermediate longest
13. Two compounds are isomers if they have the same chemical formula but a different arrangement of atoms. Use bond energies available in Table 9.3 in your test to estimate ΔH_{rxn} for each of the following isomerization reactions and indicate which isomer is more stable.

a) Ethanol $\overset{\rightarrow}{\overset{\rightarrow}{\text{H-C-C-O-H}}} \rightarrow$ Dimethyl ether

\begin{align*}
\text{Bond Breaking (BB)} & & \text{Bond Forming (BF)} \\
1 \text{ O–H} & 464 \text{ kJ} & 1 \text{ C–O} & 360 \text{ kJ} \\
1 \text{ C–C} & 347 \text{ kJ} & 1 \text{ C–H} & 414 \text{ kJ}
\end{align*}

$\Delta H = \Sigma \text{BB} - \Sigma \text{BF} = 811 - 774 = 37 \text{ kJ}$

Ethanol is the more stable isomer since it has stronger bonds (larger bond energy values)

b) Ethylene oxide $\overset{\rightarrow}{\overset{\rightarrow}{\text{H-C=O}}} \rightarrow$ Acetaldehyde

\begin{align*}
\text{Bond Breaking (BB)} & & \text{Bond Forming (BF)} \\
2 \text{ C–O} & 360 \text{ kJ} & 1 \text{ C=O} & 736 \text{ kJ}
\end{align*}

$\Delta H = \Sigma \text{BB} - \Sigma \text{BF} = 720 - 736 = -16 \text{ kJ}$

Acetaldehyde is the more stable isomer since it has stronger bonds (larger bond energy values)