ANSWER KEY

REVIEW QUESTIONS Chapter 6

1. What is the change in internal energy (in J) of a system that releases 575 J of heat to its surroundings and has 425 cal of work done on it?

$$\Delta E = q + w$$

$$q = -575 J \qquad w = +425 \text{ cal } x \frac{4.18 \text{ J}}{1 \text{ cal}} = +17\underline{7}7 \text{ J}$$

$$\Delta E = -575 \text{ J} + 17\underline{7}7 \text{ J} = +1200 \text{ J}$$

2. If an athlete expends 1700 kJ/h playing tennis, how long would she have to play to work off 1.0 lb of body fat? (One pound of body fat is equivalent to 4100 nutritional Calories)

1.0 lb fat x
$$\frac{4100 \text{ Cal}}{1 \text{ lb fat}}$$
 x $\frac{1 \text{ keal}}{1 \text{ Cal}}$ x $\frac{4.18 \text{ kJ}}{1 \text{ keal}}$ x $\frac{1 \text{ hr}}{1700 \text{ kJ}}$ = 10. hrs

3. A 27.7 g sample of ethylene glycol, a car radiator coolant, absorbs 588 J of heat from the car engine. What is the initial temperature of the engine, if its final temperature is 30.5° C? (C_s of ethylene glycol = 2.42 J/g°C)

$$\Delta \mathbf{T} = \frac{\mathbf{q}}{\mathbf{m} \mathbf{x} \mathbf{C}_{s}} = \frac{588 \text{ J}}{27.7 \text{ g } \mathbf{x} 2.42 \text{ J/g}^{\circ} \text{C}} = 8.77 \text{ }^{\circ} \text{C}$$
$$\mathbf{T}_{i} = \mathbf{T}_{f} + \Delta \mathbf{T} = 30.5 + 8.77 = 39.3 \text{ }^{\circ} \text{C}$$

4. When 155 mL of water at 20.0°C is mixed with 75.0 mL of water at 80.0°C, what is the final temperature? (Assume specific heat of hot and cold water are the same, and density of water = 1.00 g/mL)

 $\begin{array}{ll} q_{h} = -q_{c} \\ (m \ x \ \ C_{s} \ x \ \Delta T)_{h} = - \ (m \ x \ \ C_{s} \ x \ \Delta T)_{c} & (since \ \ C_{s} \ of \ hot \ and \ cold \ water \ are \ same) \\ \\ \frac{\Delta T_{h}}{\Delta T_{c}} = - \frac{m_{c}}{m_{h}} = - \frac{155 \ g}{75 \ g} = -2.07 \\ \\ \Delta T_{h} = -2.07 \ \Delta T_{c} \\ (T_{f} \ - \ 80.0) = -2.07(T_{f} \ - 20.0) \\ \\ 3.07 \ T_{f} = 121.4 & T_{f} = 39.5 \ ^{\circ}C \end{array}$

5. A 1.500-g sample of a hydrocarbon is placed in a bomb calorimeter and undergoes combustion. The temperature of the calorimeter rises from 20.00°C to 23.55°C. If the calorimeter has a heat capacity of 40.3 J/°C, what is the heat of combustion (q_v) for this hydrocarbon in kJ/g?

$$q_{v} = C_{cal} \propto \Delta T = (40.3 \text{ J/}^{\circ}\text{C}) (3.55 \text{ }^{\circ}\text{C}) = -143 \text{ J} \quad (-\text{ sign: exothermic})$$
$$q_{v} = -\frac{143 \text{ Jx} \frac{1 \text{ kJ}}{10^{3} \text{ J}}}{1.500 \text{ g}} = -0.0953 \text{ kJ/g}$$

6. The heat of sublimation for iodine is 62.4 kJ/mol, at 25°C and 1.00 atm. What is ΔE for the sublimation of iodine (shown below) under these conditions?

$$I_2(s) \rightleftharpoons I_2(g)$$

$$\begin{split} \Delta E &= q + w \\ q &= +62.4 \text{ kJ} \qquad (\text{sublimation is endothermic}) \\ w &= -P\Delta V \qquad (\text{work is done by system during expansion}) \\ \Delta V &= \text{volume occupied by 1 mol iodine gas at 25°C} \\ \Delta V &= \frac{nRT}{P} = \frac{(1.00 \text{ mol})(0.0821)(298 \text{ K})}{1.00 \text{ atm}} = 24.5 \text{ L} \\ w &= -(1.00 \text{ atm})(24.5 \text{ L})(0.1013 \text{ kJ/Latm}) = -2.48 \text{ kJ} \\ \Delta E &= +62.4 \text{ kJ} - 2.48 \text{ kJ} = +59.9 \text{ kJ} \end{split}$$

7. A bomb calorimeter with heat capacity of 1.500x10³ J/°C was used to study combustion of terbium (Tb) in excess oxygen:

$$4 \text{ Tb}(s) + 3 \text{ O}_2(g) \rightarrow 2 \text{ Tb}_2 \text{O}_3(s)$$

When 1.000-g of terbium was burned, a temperature increase of 3.908°C was observed. What is the ΔE for the reaction, in kJ/mol of Tb₂O₃?

$$q_{v} = C_{cal} \ x \ \Delta T = (1.500 \times 10^{3} \ J/^{\circ}C) \ (3.908 \ ^{\circ}C) = -5862 \ J \qquad (- \ sign: \ exothermic \ reaction)$$

$$1.000 \ g \ Tb \ x \ \frac{1 \ mol}{158.9 \ g} \ x \ \frac{2 \ mol \ Tb_{2}O_{3}}{4 \ mol \ Tb} = 0.003147 \ mol \ Tb_{2}O_{3}$$

$$\Delta E = q_{v} = \frac{-5862 \ Jx \ \frac{1 \ kJ}{10^{3} \ J}}{0.003147 \ mol} = -1863 \ kJ/mol$$

- 8. One mole of nitrogen gas confined in a cylinder with a piston is heated from 0°C to 819°C at 1.00 atm.
 - a) Calculate the work of expansion in Joules.

w = -P ΔV (work is done by system during expansion) ΔV = volume change for 1 mol nitrogen gas from 0 °C to 819°C V_{819} = 22.4 L x $\frac{1092 \text{ K}}{273 \text{ K}}$ = 89.6 L ΔV = (89.6 L - 22.4 L)= 67.2 Lw = -(1.00 atm)(67.2 L)(101.3 J/Latm)= -6.81x10^3 J

b) What would have been the temperature change if the gas had been heated with the same amount of energy in a container of fixed volume. (Assume the specific heat of N_2 is 1.00 J/g°C)

In a bomb calorimeter (fixed volume) the work of expansion calculated above would be converted to heat. Therefore,

$$\Delta T = \frac{q}{m x C_s} = \frac{6.81 \times 10^3 J}{28.02 g x 1.00 J/g^{\circ}C} = 243 \ ^{\circ}C$$

9. How many kJ of heat is produced when 5.00 g of Al reacts with excess chlorine, as shown below:

 $2 \text{ Al } (s) + 3 \text{ Cl}_2 (g) \rightarrow 2 \text{ AlCl}_3 (s)$ $\Delta \text{H}=-1408 \text{ kJ}$

5.00 g Al x
$$\frac{1 \text{ mol}}{26.98 \text{ g}}$$
 x $\frac{1408 \text{ kJ}}{2 \text{ mol Al}}$ = 1.30x10² kJ

10. Consider the following reaction:

$$2 N_2(g) + O_2(g) \rightarrow 2 NO_2(g) \qquad \Delta H = +163.2 \text{ kJ}$$

a) How many grams of N₂ must react to produce an enthalpy change of 5.00 kJ?

5.00 kJ x
$$\frac{2 \text{ mol } N_2}{163.2 \text{ kJ}}$$
 x $\frac{28.02 \text{ g}}{1 \text{ mol}}$ = 1.72 g N₂

b) How much heat is transferred when 25.0 g of NO₂ is produced in this reaction?

25.0
$$\frac{g}{MO_2} \propto \frac{1}{46.01} \frac{mol}{g} \propto \frac{163.2 \text{ kJ}}{2 \frac{mol}{MO_2}} = 44.3 \text{ kJ}$$

11. When 6.50 g of solid NaOH is dissolved in 100.0 g of water in a calorimeter, the temperature rises from 21.6 °C to 37.8 °C. Calculate the change in enthalpy of solution in kJ/mol of NaOH. Assume specific heat of solution is the same as water.

mass of solution = 100.0 g + 6.50 g = 106.5 g
q = (m x C_s x
$$\Delta$$
T) = (106.5 g)(4.18 J/g °C)(16.2 °C) = -7212 J (- sign: exothermic)
6.50 g NaOH x $\frac{1 \text{ mol}}{40.00 \text{ g}}$ =0.1625 mol

$$\Delta$$
H = $\frac{-72\underline{1}2 + x \frac{1 \text{ kJ}}{10^3 + 10^3$

12. When 1.025 g of naphthalene ($C_{10}H_8$) is burned in a bomb calorimeter, the temperature rises from 24.25°C to 32.33°C. Find ΔE_{rxn} for combustion of naphthalene in kJ/mol. Heat capacity of the calorimeter is 5.11 kJ/°C.

$$q_{v} = C_{cal} \ x \ \Delta T = (5.11 \ \text{kJ/}^{\circ}\text{C}) \ (8.08 \ ^{\circ}\text{C}) = -41.3 \ \text{kJ} \qquad (- \text{ sign: exothermic reaction})$$

$$1.025 \ \text{g} \ C_{10}\text{H}_{8} \ x \ \frac{1 \ \text{mol}}{128.18 \ \text{g}} = 8.00 \text{x} 10^{-3} \ \text{mol} \ C_{10}\text{H}_{8}$$

$$\Delta E = q_{v} = \frac{-41.3 \ \text{kJ}}{8.00 \text{x} 10^{-3} \ \text{mol}} = -5.16 \text{x} 10^{3} \ \text{kJ/mol}$$

13. When 10.0 g of phosphorus is burned in oxygen gas to form solid P_4O_{10} , enough heat is generated to raise the temperature of 2960 g of water from 18.0°C to 38.0°C. Calculate the enthalpy of formation of solid P_4O_{10} under these conditions.

 $4 P + 5 O_2 \longrightarrow P_4 O_{10}$ $q = (m \ x \ C_s \ x \ \Delta T) = (2960 \ g)(4.18 \ J/g \ ^\circ C)(20.0 \ ^\circ C) = -2.4 \underline{7}5 x 10^5 \ J \quad (- \ sign: \ exothermic)$ $10.0 \ g \ P \ x \ \frac{1 \ mol}{30.97 \ g} x \ \frac{1 \ mol}{4 \ mol} \frac{P_4 O_{10}}{P} = 0.0807 \ mol \ P_4 O_{10}$ $\Delta H_f = \frac{-2.475 x 10^5 \ J \ x \ \frac{1 \ kJ}{10^3 \ J}}{0.0807 \ mol} = -3070 \ kJ/mol \ P_4 O_{10}$

14. Calculate the enthalpy change for the reaction below:

$$C_2H_4(g) + 6F_2(g) \rightarrow 2CF_4(g) + 4HF(g)$$
 $\Delta H=???$

based on the following reactions:

Total	$\overline{\mathrm{C_{2}H_{4}}\left(\mathrm{g}\right)\ +\ 6\ \mathrm{F_{2}}\left(\mathrm{g}\right)\ \rightarrow\ 2\ \mathrm{CF_{4}}\left(\mathrm{g}\right)\ +\ 4\ \mathrm{HI}}$	$\mathbf{F}(\mathbf{g}) \qquad \mathbf{\Delta H} = -2486 \text{ kJ}$
Reverse	$C_{2}H_{4}\left(g ight) ightarrow rac{2}{2}C\left(s ight)+rac{2}{2}H_{2}\left(g ight)$	Δ H= -(+52.3 kJ)= -52.3 kJ
	$2\;C\;(s)+2\;H_2\;(g)\rightarrow\;C_2H_4\;(g)$	Δ H=+52.3 kJ
Multiply by 2	$2 \qquad \frac{2 \cdot C}{2 \cdot C} \left(s \right) + 4 \cdot F_2 \left(g \right) \rightarrow \ 2 \cdot CF_4 \left(g \right)$	$\Delta H= 2(-680 \text{ kJ})=-1360 \text{ kJ}$
	$C(s)+2F_2(g)\toCF_4(g)$	Δ H=-680 kJ
Multiply by 2	2 $2 - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} = 2 - \frac{1}{2} - \frac{1}{2} = 2 - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} = \frac{1}{2} - $	$\Delta H= 2(-537 \text{ kJ})=-1074 \text{ kJ}$
	$H_2(g) + F_2(g) \rightarrow 2 HF(g)$	ΔH =-537 kJ

15. Determine the enthalpy change for the reaction below:

$$C(s) + H_2O(g) \rightarrow CO(g) + H_2(g)$$
 $\Delta H=???$

based on the following reactions:

 Total	$C\left(s\right)\ +H_{2}O\left(g\right)\ \rightarrow\ CO\left(g\right)\ +H_{2}\left(g\right)$	Δ H= +131.3 kJ
Reverse & divide by 2	$\mathrm{H_{2}O}\left(g\right) \rightarrow \ \mathrm{H_{2}}\left(g\right) + \tfrac{1}{2} \mathrm{O_{2}}\left(g\right)$	$\Delta H = -\frac{1}{2}(-483.6 \text{ kJ}) = +241.8 \text{ kJ}$
	$2 \text{ H}_2 \left(g\right) + O_2 \left(g\right) \rightarrow 2 \text{ H}_2 O \left(g\right)$	Δ H=-483.6 kJ
Reverse & divide by 2	$\mathbf{C}\mathbf{\Theta}_{2}\left(\mathbf{g} ight) ightarrow\mathbf{CO}\left(\mathbf{g} ight)+rac{1}{2}\mathbf{\Theta}_{2}\left(\mathbf{g} ight)$	$\Delta H = -\frac{1}{2} (-566.0 \text{ kJ}) = +283.0 \text{ kJ}$
	$2 \text{ CO} (g) + O_2 (g) \rightarrow 2 \text{ CO}_2 (g)$	Δ H=-566.0 kJ
No change	$C\left(s\right)\ +\varTheta_{2}\left(g\right)\ \rightarrow C\varTheta_{2}\left(g\right)$	ΔH = -393.5 kJ
	$C\left(s\right)\ +O_{2}\left(g\right)\ \rightarrow CO_{2}\left(g\right)$	ΔH=–393.5 kJ

16. Use enthalpies of formation given to determine the standard enthalpy of reaction for the following:

 $\begin{array}{rcl} 2 \ Al \ (s) &+ \ Fe_2O_3 \ (s) &\to & Al_2O_3 \ (s) &+ \ 2 \ Fe & & \Delta H^\circ =??? \\ \Delta H^\circ_f \ (kJ/mol) & 0 & -825.5 & -1676 & 0 \end{array}$

 $\Delta H^{\circ} = \Sigma \Delta H^{\circ} (\text{products}) - \Sigma \Delta H^{\circ} (\text{reactants})$

 $\Delta H^{\circ} = [(-1676 \text{ kJ}) + 2(0)] - [2(0) + (-825.5 \text{ kJ})] = -851 \text{ kJ}$

17. Use the enthalpies of formation and the enthalpy of reaction given below to determine the enthalpy of formation for solid CaC_2 .

 $CaC_{2} (s) + 2 H_{2}O (l) \rightarrow Ca(OH)_{2} (s) + C_{2}H_{2} (g) \qquad \Delta H^{\circ} = -127 \text{ kJ}$ $\Delta H^{\circ}_{f} (kJ/mol) ??? -286 -986 +227$ $\Delta H^{\circ} = \Sigma \Delta H^{\circ} (\text{products}) - \Sigma \Delta H^{\circ} (\text{reactants})$ $\Delta H^{\circ} = [(-986 \text{ kJ}) + (+227 \text{ kJ})] - [(\Delta H^{\circ}_{f}) + 2(-286 \text{ kJ})] = -127 \text{ kJ}$ $\Delta H^{\circ} = [-759 \text{ kJ}] - [(\Delta H^{\circ}_{f}) + (-572)] = -127 \text{ kJ}$

 $\Delta H^{\circ}_{f} (CaC_{2}) = -60 \text{ kJ/mol}$

18. The heat of vaporization of a liquid (ΔH_{vap}) is the heat required to vaporize 1.00 g of a liquid. In one experiment, 60.0 g of liquid nitrogen (b.p. –196 °C) are poured into a Styrofoam cup containing 200. g of water at 55.3 °C. Calculate the molar heat of vaporization of liquid nitrogen if the final temperature of the water is 41.0 °C.

Heat lost by water = Heat gained by liquid nitrogen

$$q_{H_{2}O} = m \ x \ C_{s} \ x \ \Delta T = (200. \ g)(4.18 \ J/g \ ^{\circ}C)(14.3 \ ^{\circ}C) = +11955 \ J \qquad (+ \ sign: \ endothermic)$$

60.0 g N₂ x $\frac{1 \ mol}{28.02 \ g} = 2.14 \ mol$
$$\Delta H_{vap} = \frac{+11955 \ J \times \frac{1 \ kJ}{10^{3} \ J}}{2.14 \ mol} = 5.59 \ kJ/mol$$

19. Ice at 0°C is placed in a Styrofoam cup containing 361 g of a soft drink at 23.0°C. Some ice remains after the ice and the soft drink reach an equilibrium temperature of 0 °C. Determine the mass of the ice that has melted. Assume the specific heat of the drink to be the same as pure water. (It requires 334 J of heat to melt 1 g of ice at 0°C)

Heat lost by drink = Heat gained by ice $q_{drink} = m \ x \ C_s \ x \ \Delta T = (361 \ g)(4.18 \ J/g \ ^{\circ}C)(23.0 \ ^{\circ}C) = 34\underline{7}00 \ J$ mass of ice melted = $34\underline{7}00 \ J \ x \ \frac{1 \ g \ ice}{334 \ J} = 104 \ g$

20. A quantity of 200. mL of 0.862 M HCl is mixed with 200. mL of 0.431 M Ba(OH)₂ in a Styrofoam cup. The initial temperature of both solutions is 20.48 °C. Calculate the heat of neutralization in kJ/mol of H₂O, if the final temperature of the solution is 26.30°C. (Assume specific heat and density of solution to be the same as water)

 $2 \text{ HCl} + \text{Ba}(\text{OH})_2 \longrightarrow \text{BaCl}_2 + 2 \text{ H}_2\text{O}$ mass of solution = 400. mL x $\frac{1.00 \text{ g}}{1 \text{ mL}}$ = 400. g q = (m x C_s x Δ T) = (400. g)(4.18 J/g °C)(5.82 °C) = -97<u>3</u>0 J (- sign: exothermic) mol H₂O = 200. mL HCl x $\frac{0.862 \text{ mol}}{1000 \text{ mL}}$ x $\frac{2 \text{ mol H}_2\text{O}}{2 \text{ mol HCl}}$ = 0.17<u>2</u>4 mol Δ H_{neut} = $\frac{-97\underline{3}0 \text{ J} \text{ x} \frac{1 \text{ kJ}}{10^3 \text{ J}}}{0.17\underline{2}4 \text{ mol H}_2\text{O}}$ = -56.4 kJ/mol 21. Determine the enthalpy change for the reaction below:

$$2 \operatorname{XO}_2(s) + \operatorname{CO}(g) \rightarrow \operatorname{X}_2\operatorname{O}_3(s) + \operatorname{CO}_2(g) \qquad \qquad \Delta \operatorname{H}=???$$

based on the following reactions:

Total	$2 \operatorname{XO}_2(s) + \operatorname{CO}(g) \rightarrow \operatorname{X}_2\operatorname{O}_3(s) + \operatorname{CO}_2$	(g) $\Delta H = -55.0 \text{ kJ}$
Rev & multiply by 1/3	$\frac{2/3 \times 3\Theta_4(s) + \frac{1/3 \times \Theta_2(g)}{2} \rightarrow X_2O_3(s) + 1/3 \times \Theta_2(g$	(g) $\Delta H = -1/3(-10.6) = +3.5 \text{ kJ}$
	$3 \ X_2O_3 \left(s\right) + CO \left(g\right) \rightarrow 2 \ X_3O_4 \left(s\right) + CO_2 \left(g\right)$	ΔH = -10.6 kJ
Rev & multiply by 2/3	$\frac{2 \text{ XO}}{2 \text{ XO}}(s) + \frac{2}{3} \text{ CO}_2(g) \rightarrow \frac{2}{3} \text{ X}_3 \text{ O}_4(s) + \frac{2}{3} \text{ CO}$	(g) $\Delta H = -2/3(7.3) = -4.9 \text{ kJ}$
	$X_{3}O_{4}\left(s\right)+CO\left(g\right)\rightarrow3\;XO\left(s\right)+\;CO_{2}\left(g\right)$	ΔH = + 7.3 kJ
Multiply by 2	$2 \operatorname{XO}_2(s) + 2 \operatorname{CO}(g) \rightarrow 2 \operatorname{XO}(s) + 2 \operatorname{CO}_2(g)$	$\Delta H= 2(-26.8) = -53.6 \text{ kJ}$
	$\mathrm{XO}_2\left(\mathrm{s}\right)\ +\mathrm{CO}\left(\mathrm{g}\right)\ o\mathrm{XO}\left(\mathrm{s}\right)\ +\mathrm{CO}_2\left(\mathrm{g}\right)$	ΔH = -26.8 kJ