REVIEW QUESTIONS

Chapter 3

1. Using only a periodic table, assign charges for each ion below, then complete the table with formulas and names for compounds formed by the combination of each cation and anion.

	Ca	К	Al	NH ₄
S				
Cl				
N				
NO ₂				
SO ₄				
NO ₃				
CO ₃				
ClO ₃				
OH				
PO ₄				
1 04				

2. Fill in the missing name or formula for each compound listed below. Fill in column 1 without using any notes, and then fill in column 2 with the use of notes.

	1	2
Barium nitrate		
Ferrous chloride		
Silver hydroxide		
Strontium phosphate		
Copper(II) acetate		
Zinc nitrite		
Potassium sulfite		
Ammonium carbonate		
Iodine heptafluoride		
Bromine trifluoride		
CuClO ₄		
Ag ₂ SO ₄		
N_2O_5		
Hg_2I_2		
PbO ₂		
OF ₂		

3.	For each compound shown below, determine if the name or formula is incorrect, and
	write the correct form in the space provided:

a) Ag ₂ S Disilver sulfide	
---------------------------------------	--

4. Balance the following equations by providing the missing coefficients:

$$a) \qquad \underline{\hspace{1cm}} NH_4NO_3 \ \rightarrow \ \underline{\hspace{1cm}} N_2O \ + \ \underline{\hspace{1cm}} H_2O$$

b)
$$\underline{\hspace{1cm}}Mg_3N_2 + \underline{\hspace{1cm}}H_2O \rightarrow \underline{\hspace{1cm}}Mg(OH)_2 + \underline{\hspace{1cm}}NH_3$$

c)
$$\underline{\hspace{1cm}} NCl_3 \ + \underline{\hspace{1cm}} H_2O \ \rightarrow \underline{\hspace{1cm}} NH_3 \ + \underline{\hspace{1cm}} HOCl$$

d)
$$\underline{\hspace{1cm}} C_5H_{10}O_2 + \underline{\hspace{1cm}} O_2 \rightarrow \underline{\hspace{1cm}} CO_2 + \underline{\hspace{1cm}} H_2O$$

$$e) \qquad \underline{\hspace{1cm}} (NH_4)_2 Cr_2 O_7 \ \to \ \underline{\hspace{1cm}} N_2 + \underline{\hspace{1cm}} Cr_2 O_3 + \underline{\hspace{1cm}} H_2 O$$

$$f) \qquad \underline{\hspace{1cm}} PCl_5 + \underline{\hspace{1cm}} H_2O \ \rightarrow \underline{\hspace{1cm}} H_3PO_4 + \underline{\hspace{1cm}} HCl$$

5.	Write a balanced equation for each reaction described below. Include state designations:		
	a)	When an aqueous solution of potassium dichromate is added to and aqueous solution of lead(II) nitrate, solid lead(II) dichromate and aqueous potassium nitrate are formed.	
	b)	When chlorine gas is bubbled though an aqueous solution of potassium bromide bromine gas and aqueous potassium chloride are formed.	
	c)	When zinc metal is reaction with aqueous nitric acid, the reaction produces nitrogen gas, water and aqueous zinc nitrate.	
6.	Wł	nat mass of chlorine is present in 12.2 g of PbCl ₂ ?	
7.	Но	ow many atoms of oxygen are present in 2.15 g of Ca ₃ (PO ₄) ₂ ?	

8. What is the percent composition of caffeine $(C_8H_{10}N_4O_2)$?

- 9. Determine the empirical formula for a compound with the following composition:
 - 62.1% C
- 5.21% H
- 12.1% N
- 20.7% O

10. Combustion analysis of a 12.01-g sample of an unknown acid—which contains only carbon, hydrogen and oxygen—produced 14.08 g CO₂ and 4.32 g H₂O. Determine the empirical formula for this acid.

11. A phosphorous compound that contains 34.00% phosphorus by mass has the formula X_3P_2 . Identify the element X.

12. A 3.41-g sample of a hydrate of copper(II) chloride was heated to drive off the water of hydration. The anhydrous salt was found to have a mass of 2.69 g. Determine the formula for this hydrate.

13. Classify each hydrocarbon below as alkane, alkene or alkyne, and write a molecular formula for each:

$$\begin{array}{c} \text{CH}_3 - \text{CH} - \text{CH}_3 \\ \text{CH}_3 \end{array}$$

14. Identify the functional groups present in the structures below:

$$\begin{array}{c} \text{CH}_2\text{CH}_3 \\ \text{H}_3\text{C-HC} \\ \text{CH-CH}_2 \\ \text{H}_3\text{C-O} \\ \text{NH}_2 \end{array}$$

o=C
$$CH_2CH_2$$
 $C=C$ CH_3C-HC