THE LABORATORY NOTEBOOK

Introduction:

You are required to keep a laboratory notebook in this class. The duplicate pages from that notebook will be collected and graded. In the real world of laboratory research, the notebook serves as the primary record of a scientist's work. All data, observations, and results from each experiment must be recorded directly in the notebook. There are four important standards that these lab notebooks must meet.

- 1. It must be an honest and accurate record of the work done and the results obtained.
- 2. It must be recorded as you perform the work. Data and observations are written in the notebook as the experiment occurs.
- 3. It must be a permanent record. Changes to the notebook can make it suspect with regard to the standards above. It must be written in pen. All corrections must be legible.
- 4. The record must be kept in such a way that a competent person familiar with the field can repeat the work based on the notebook.

Ordinarily, a laboratory notebook is for a scientist's own use. However, a company or research director/advisor will often keep the original copy for practical or legal reasons. Especially in commercial work, the notebook may become legal evidence in patent or copyright disputes. Reports on a scientist's work are almost always separate from the notebook. A report might take the form of a scientific paper, a written report to company management, or a legal report. A scientist uses the data and observations recorded in the notebook as the basis for these reports, but adds explanations and discussion of the work appropriate for the intended readers.

Your notebooks are monitored and graded to teach you the proper way to keep a notebook. To ensure that these standards are met, you are required to follow certain conventions regarding the keeping of laboratory notebooks. As you progress in your scientific education, you will learn additional requirements and best practices when keeping a proper laboratory notebook. One of the primary objectives in this course is to learn the fundamentals of good notebook practices.

As the semester progresses, you will be expected to write separate laboratory reports based on the data and observations that you recorded in your notebook during the performance of the experiment. The proper procedure for writing of this laboratory report will be discussed later in the semester.

In this course a separate data sheet is required at the end of each experiment. For the first few experiments you will be guided as how to prepare a proper data sheet.

Format:

There are many formats that are acceptable for lab notebooks in general. However, a company may require its employees to follow a standard format for their lab notebooks so that information can be found more easily. In the same way, it is useful to have everyone in the class use the same format. Therefore, in this class, we require you to follow a particular format that is described below. Failure to follow this format can result in point deductions when you lab notebooks are graded.

- Do not use the back of any page. Begin the first experiment on page 3, leaving pages 1 and 2 for a table of contents that you will build as you use the notebook. Your table of contents should include the title of each experiment and the number of the notebook page on which your description of that experiment begins. Each time that you begin a new experiment, make a table of contents entry for that experiment. Do not try to construct the table of contents ahead of time because changes may have to be made to it.
- Write in pen not pencil. When you make a miskake mistake, simply put a single line through the error, and write the correction after. The information that was stricken must still be legible. Do not totally blank out or scribble over a mistake. Do not use whiteout.
- Within your description of each experiment, keep each required section separate from the others. For example, don't mix data with procedures. Clearly label each section and separate it from other sections. Arrange the sections in the order prescribed and do not leave large blank spaces on a page. Do not skip any pages (except for the pages reserved for the table of contents).

Listed below are the different sections you must include in your lab notebook for each experiment. Additional instructions and comments on keeping the notebook follow each section. Before each lab period, complete sections 1-5 of your notebook for the experiment we are scheduled to do on that day. If you have not completed your notebook you will not be allowed to perform your experiment and you could lose the points for that experiment.

1. Date	There is a place for the date to be entered at the top of the			
	page. This is the date on which you do the experiment. Enter			
	the date on every page.			
2. Name	Put your name in the space provided at the top of each page. If you work with a partner, also include your partner's name.			
3. Title of	In this class you can use the title in the manual or the syllabus.			
Experiment Enter the title in the space marked "Experiment" at the t				
	first page of your notebook write-up for each experiment. Your			
	instructor may also require you to enter the title on subsequent			
	pages. Even if he or she does not require it, it is a good idea to do			
	this in case a duplicate page becomes separated from the rest of			
	the pages after being removed from the notebook.			

	There are spaces for the course and section at the top of each		
	page also. Your instructor will let you know whether he or she		
	requires you to use them.		
4. Purpose	A brief description of the scientific purpose for doing the		
	experiment serves as an introduction to the main body of the		
	notebook write-up. It normally consists of one short paragraph		
	of perhaps one to three sentences.		
5. Procedure	Write a summarized description of the procedure that you will		
	be using in the experiment. This section should be more than a		
	handful of sentences but typically less than one page long.		
	Include enough detail to allow a knowledgeable chemist to carry		
	out the entire experiment just following your written procedure.		
	Include enough detail to be able to perform the procedure but		
	do not rewrite the procedure from the manual verbatim. The		
	procedure should contain target volumes, masses and		
	temperature. It should also specify any unique glassware or		
	materials to be used. Drawings of set-ups are valuable when		
	carrying out an unfamiliar method for the first time.		
6. Data and	This section is always found in both lab notebooks and		
Observation	reports of working chemists. It is probably the most		
	important section of any laboratory notebook.		
	Include in this section all of the measurements (mass, volume,		
	times, temperatures) along with units and clear identifiers that		
	you make in the laboratory. If the procedure calls for 4 g of		
	starting material and you weigh out 3.965 g, record that as		
	your number, not 4.00. Write data down directly into your lab		
	notebook. Do NOT write data down on scratch pieces of paper		
	and later neatly transfer to notebook. The data needs to be		
	recorded directly in the notebook as it is obtained.		
	Be sure to include observations such things as color and phase of		
	all starting materials and products. Record all changes such as		
	colors, bubbling, a new phase, precipitations and temperature		
	shifts such as if a flask gets cold or warm. Often observations are		
	just as important as hard data. Many new discoveries were made		
	based on keen observations. Your instructor will deduct points for		
	few or no observations.		
7. Conclusion	After all of the data and observations have been collected, think		
	about the experiment and whether the purpose was obtained.		
	Make a brief, one to three sentence statement summarizing the		
	tindings and the success or failure of the stated objectives.		
8. Signature &	Print your name (as signature) and date each page of notebook		
Date	completed.		

Two examples of sample pages of lab notebook are included next.

Exp. No.	Experiment/Subject		Date	27
Name		Lab Partner	Locker/ Desk No.	Course & Section No.

Purspose: Learn what happens when active Group I or Group II metals react with Water. Use an acid-base titration to determine the Chemical formula of the product formed when Calcium reacts with water.

Materials: Gilazed Weighing paper, porceps, 25-50 mL buret, Mossy Jzine, fresh calcium turnings, 6 M HCL, 0.02 M DHCL, 1% phenolphthalein indicator, 0.1% thymol blue indicator, Naticoz.

Observations:

1. The reaction of zine and calcium with the and the

a) Zinc added to 6 M HCI in the test tube. Zncsst & HCI caq, -> ZnCI 2 caq, + H2 cq,

Zinc reacts quickly with tell and forms bubbles of the Also, the mixture produces heat.

by When H2 in invested test tube is brought near a glame

Pop sound is heard and the plane goes out.

c) When ca is added to GM tech calcium metal reacts vigrously with tech and produces bubbles of t218,

(a+ 2+10 100) Call 2 (ag) + +2 (g)

d) Compare the reaction of the gas collected from the Calcium - HU reaction with the reaction of hydrogen collected from the zinc - HU reaction. Pop sound heard when the gas collected from the

Calcium-HCl reaction was brought hear a flame was loud than the zinc-HCl reaction. Signature Date Witness/TA Date

Signature Date Witness/TA

THE HAYDEN-MCNEIL STUDENT LAB NOTEBOOK

Note: Insert Divider Under Copy Sheet Before Writing

10

Introduction: Determine the iodine/zinc mass ratio for zinc iodide, which is prepared by reacting zinc with iodine in solution.

Materiale: Variable temperature electric hot plate, aluminium foil, glazed weighing paper, 20-mest granular zinc, Izis, methanor, 125 mL and 250 mL beaker, Enlenmeyer flask, Analytical balance 1

Tocedure: Weigh a clean dry 125 m2 black. Record the mass of the empty flack. Preweigh 2.0 ± 0.1 g of granular zinc. Add zinc metal to the flack and reweigh the flack. Record the mass of the flack + zinc. Add about 2 g of iodine crystals to the flack containing zinc.

Observations and Calculations:

1. The reaction of iodine with zinc

(a) Mass of empty Erlenmeyer flask	31.081 g
b) Mass of flask + zinc	32.225 g
c) Mass of flask + zinc + iodine	33.241 g

After Reaction

3 (d) Mass of flask + unreacted zinc 31.959

Initially the color of the solution changes to black. Solution is warm to touch.

Final color -> clear solution.

Signature Date Witness/TA Date

THE HAYDEN-MCNEIL STUDENT LAB NOTEBOOK

Note: Insert Divider Under Copy Sheet Before Writing