Stoichiometry/Limiting Reactant & Percent Yield

1. Use the equation below to answer the following questions:

 Na_2SiO_3 (s) + 8 HF(aq) \rightarrow H₂SiF₆ (aq) + 2 NaF(aq) + 3 H₂O (l)

a) How many moles of HF are needed to react with 0.300 mol of Na₂SiO₃?

b) How many grams of NaF form when 0.500 mol of HF reacts with excess Na_2SiO_3 ?

- c) How many grams of Na₂SiO₃ can react with 0.800 g of HF?
- 2. Use the equation below to answer the following questions:

$$C_6H_{12}O_6 \text{ (aq)} \rightarrow 2 C_2H_5OH \text{ (aq)} + 2 CO_2 \text{ (g)}$$

- a) How many grams of CO₂ are produced when 0.400 mol of C₆H₁₂O₆ reacts in this fashion?
- b) How many grams of $C_6H_{12}O_6$ are needed to form 7.50 g of C_2H_5OH ?

3. Use the equation below to answer the following questions:

$$2 \ NaOH \ (s) \ + \ CO_2 \ (g) \quad \rightarrow \quad Na_2CO_3 \ (s) \ + \ H_2O \ (l)$$

a) How many moles of Na_2CO_3 form when 1.85 mol NaOH and 1.00 mol CO_2 are allowed to react?

b) How many moles of excess reagent remain after all reaction has been completed?

4. Use the equation below to answer the following questions:

$$C_6H_6\ +\ Br_2\ \rightarrow\ C_6H_5Br\ +\ HBr$$

a) What is the theoretical yield of C_6H_5Br in this reaction when 30.0 g of C_6H_6 reacts with 65.0 g of Br_2 ?

b) How many grams of excess reagent remain after all reaction has been completed.

c) If the actual yield of C₆H₅Br was 56.7 g, what is the percent yield for this reaction?