QUANTUM NUMBERS & ORBITALS

1. Name the orbitals described by the following quantum numbers

 a) n = 3, l = 0 ________

 b) n = 2, l = 1 ________

 c) n = 3, l = 2 ________

 d) n = 5, l = 3 ________

2. Give the n and L values for the following orbitals

 a) 1s ________________

 b) 6p ________________

 c) 5f ________________

3. Place the following orbitals in order of increasing energy:

 1s, 3s, 4s, 6s, 3d, 4f, 3p, 7s, 5d, 5p

4. How many possible orbitals are there for:

 a) n = 5 ____________

 b) n = 10 ____________

5. Circle all of the following orbital destinations that are not possible:

 7s 1p 5d 2d 4f 3p

6. Identify and circle what is wrong with each of the following ground-state electron configurations:

 a) 1s^2 2s^3 2p^3

 b) 1s^2 2s^2 2p^3 3s^2

 c) 1s^2 2s^2 2p^7 3s^2 3p^8
7. Give two examples (i.e. list 2 elements that are examples) of:
 a) an atom with a half-filled subshell

 b) an atom with a completely filled outer shell

 c) an atom with its outer electrons occupying a
 half-filled subshell and a filled subshell

8. Fill in the blanks with the correct response:
 a) The number of orbitals with the quantum numbers \(n=3, \, l=2\) and \(m_l = 0\) is ________.
 b) The subshell with the quantum numbers \(n=4, \, l=2\) is ________.
 c) The \(m_l\) values for a d orbital are ________________________.
 d) The allowed values of \(l\) for the shell with \(n=2\) are ________.
 e) The number of orbitals in a shell with \(n=3\) is ________.
 f) The maximum number of electrons with quantum numbers with \(n=3\) and \(l=2\) is ________.
 g) When \(n=2\), \(l\) can be ________.
 h) The number of electrons with \(n=4, \, l=1\) is ________.

9. Write the values for the quantum numbers for the **bold** electron in the following diagrams:
 a) __________________________
 b) __________________________
 c) __________________________
10. Given the following orbital diagram, write the set of quantum numbers for each electron that is marked:

\[\begin{array}{cccccc}
 & & & & & \\
| & & & & & \\
| & & & & & \\
1s & 2s & 2p & 2p & 2p & 3s & 3p \ \\
\end{array} \]

Circled = ____________________ Boxed: ____________________

Triangle = ____________________ Last one placed: ____________________

11. Indicate which of the following sets of quantum numbers could NOT occur and explain why:

a) 1,1,0,+1/2

b) 2,1,0,+1/2

c) 2,0,1,-1/2

d) 2,1,0,0

e) 3,2,0,-1/2