QUANTUM NUMBERS & ORBITALS

- 1. Name the orbitals described by the following quantum numbers
 - a) n = 3, l = 0
 - b) n = 2, 1 = 1
 - c) n = 3, 1 = 2
 - d) n = 5, 1 = 3
- 2. Give the n and L values for the following orbitals
 - a) 1s _____
 - b) 6p _____
 - c) 5f _____
- 3. Place the following orbitals in order of increasing energy:

- 4. How many possible orbitals are there for:
 - a) n = 5
 - b) n = 10 _____
- 5. Circle all of the following orbital destinations that are $\underline{\mathbf{not}}$ possible:
 - 7s
- 1p
- 5d
- 2d
- 4f
- 3p
- 6. Identify and circle what is wrong with each of the following ground-state electron configurations:
 - a) $1s^2 2s^3 2p^3$
 - b) $1s^2 2s^2 2p^3 3s^2$
 - c) $1s^2 2s^2 2p^7 3s^2 3p^8$

7	Give two exam	nnles (i e	list 2	elements t	hat are	examples) of:
/.	Give two exai	11pies (1.e	. HSt ∠	elements t	mai are	examples	<i>)</i> O1.

a) an atom with a half-filled subshell _____

b) an atom with a completely filled outer shell

c) an atom with its outer electrons occupying a half-filled subshell and a filled subshell

8. Fill in the blanks with the correct response:

a) The number of orbitals with the quantum numbers n=3, l=2 and $m_l=0$ is ______.

b) The subshell with the quantum numbers n=4, l=2 is _____.

c) The m_l values for a d orbital are ______.

d) The allowed values of l for the shell with n=2 are _____.

e) The number of orbitals in a shell with n=3 is ______.

f) The maximum number of electrons with quantum numbers with n=3 and l=2 is ______.

g) When *n*=2, *l* can be _____.

h) The number of electrons with n=4, l=1 is _____.

9. Write the values for the quantum numbers for the **bold** electron in the following diagrams:

5s

3p

c) _____

10. Given the following orbital diagram, write the set of quantum numbers for each electron that is marked:

Circled = _____ Boxed : ____

Triangle = _____ Last one placed: _____

11. Indicate which of the following sets of quantum numbers could NOT occur and explain why:

- a) 1,1,0,+1/2 _____
- b) 2,1,0,+1/2
- c) 2,0,1,-1/2
- d) 2,1,0,0
- e) 3,2,0,-1/2